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Preface 

We dedicate this book to the memory of J. Frank Adams. His clear 
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Our views of topos theory, as presented here, have been shaped by 
continued study, by conferences, and by many personal contacts with 
friends and colleagues-including especially O. Bruno, P. Freyd, J.M.E. 
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we extend our hearty thanks in particular to P. Corazza, K. Edwards, 
J. Greenlees, G. Janelidze, G. Lewis, and S. Schanuel. 

Our work on the book has been supported by the Netherlands Sci
ence Foundation (NWO) and by the Department of Mathematics at the 
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visits to the University of Heidelberg were encouraged by A. Dold and D. 
Puppe. We gratefully note that, from the beginning of our joint project 
in May of 1988, Peter May has made effective arrangements for many 
visits by I.M. to Chicago. We are likewise grateful to M.C. Pedicchio, 
who arranged for our joint visit in 1990 to The University of Trieste, 
where we wrote Chapter VIII. 

Our special thanks go to Walter Carlip, who typed up the entire 
manuscript with verve and understanding, and to Springer-Verlag for 
the smooth production of the resulting book. 

Saunders Mac Lane, Ieke Moerdijk 
Chicago and Utrecht, June 1991 
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Prologue 

A startling aspect of topos theory is that it unifies two seemingly 
wholly distinct mathematical subjects: on the one hand, topology and 
algebraic geometry, and on the other hand, logic and set theory. Indeed, 
a topos can be considered both as a "generalized space" and as a "gen
eralized universe of sets". These different aspects arose independently 
around 1963: with A. Grothendieck in his reformulation of sheaf theory 
for algebraic geometry, with F. W. Lawvere in his search for an axioma
tization of the category of sets and that of "variable" sets, and with Paul 
Cohen in the use of forcing to construct new models of Zermelo-Frrenkel 
set theory. 

The study of cohomology for generalized spaces led Grothendieck 
to define his notion of a topos. The cohomology was to be one with 
variable coefficients-for example, varying under the action of the fun
damental group, as in N. E. Steenrod's work in algebraic topology, or, 
more generally, varying in a sheaf. The notion of a sheaf has its origins 
in the analytic continuation of functions, as initiated in the 19th cen
tury and then formulated rigorously in H. Weyl's famous book on the 
"idea" of the Riemann surface. For several complex variables the study 
of domains of holomorphy and of the Cousin problems gradually led 
H. Cartan and K. Oka in the 1940's to study ideals on a domain. They 
were in effect sheaves; thus Cartan in 1944 spoke of "coherent systems 
of punctual ideals", while in 1949 Oka discussed "ideals with indeter
minate domain". Then shortly after World War II, J. Leray published 
the first general and explicit definition of a sheaf on a space, described 
in terms of the closed sets of that space. H. Cartan, building on the 
ideas of Leray, rephrased the definition of sheaves in terms of open sets 
in his seminars of 1948-49 and 1950-51; in the course of these seminars, 
Lazard introduced the equivalent definition of a sheaf on a space X as 
an etale map into X. The subtle equivalence between these two notions 
is a central motivation of topos theory. 

Roughly speaking, a sheaf A of abelian groups on a topological space 
X is a family of abelian groups Ax, parametrized by the points x E 
X in a suitably "continuous" way. This means in particular that the 
disjoint union U Ax of all these groups is a space, so topologized that 
the projection of this space into X (sending each group Ax to the point 
x) is continuous and also etale, in the sense that the topology on the 
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2 Prologue 

disjoint union is "horizontal" to match the topology of X, while the 
algebra (the abelian group structure of the various Ax) is vertical, along 
each fiber Ax. For each open set U ~ X one can then consider the 
"sections" s over U of the sheaf A: each section is a function which 
selects-again in a suitably continuous way-for each point x E U an 
element s(x) in the corresponding abelian group Ax. Thus, given a 
smaller open set V ~ U, each section 8 over U can be restricted to the 
smaller V. And conversely, the whole section s over U can be recovered 
by collating the restrictions of 8 to each of the smaller open sets Vi in 
some covering U = U Vi. For example, two sections s over V and 8' 

over V' yield a new section s U 8' over V U V', provided 8 coincides with 
8' on the overlap V n V'. Then the sheaf A can be described wholly 
in terms of all these sections s for all open sets U, together with these 
operations of restriction and collation. With this development of the 
notion of sheaf it became possible to define a corresponding cohomology 
of a topological space with sheaf coefficients. 

Then J. P. Serre and others realized that such sheaves could be used 
not only in topology but also in algebraic geometry, and that the con
struction of a sheaf on a space X could proceed from sections s defined 
on objects U which were not necessarily subsets U ~ X, but simply 
mappings U -+ X from some other space U into X. Thus, ideas from 
category theory entered, even though the tradition of Bourbaki pro
scribed the use of such terms. They led Grothendieck to define sheaves 
in a general context, replacing the partially ordered collection of open 
subsets of a space by objects of a category C in which suitable families 
of maps Ui -+ X (for i E J) form "covers" of objects X in C. Then for 
such a "Grothendieck topology" a sheaf became something-indeed be
came a functor-which could be suitably collated over each such cover. 
With this general notion of sheaf, various cohomologies could be for
mulated in a long range attack on the Weil conjectures about solutions 
of polynomial equations. In the early sixties, these remarkably general 
ideas were rapidly developed by A. Grothendieck and his collaborators
J. L. Verdier, M. Artin, M. Giraud, M. Hakim, L. Illusie, and others. 
The results, initially recorded in a semi-secret document, SGA IV, later 
appeared as an expanded "SGA IV" in three volumes of the Springer 
Lecture Notes, for a total of 1623 pages. They were widely influential on 
the whole structure of algebraic geometry and in particular eventually 
led to the solution of the Weyl conjectures by P. Deligne in 1974. 

For Grothendieck, topology became the study of (the cohomology 
of) sheaves, and the sheaves "sited" on a given Grothendieck topology 
formed a topos-subsequently called a Grothendieck topos. Since the 
very notion of sheaf is thus central to topos theory, Chapter II will de
velop properties of sheaves on a topological space, so as to introduce 
the intuition of sheaves, both in terms of fibers pasted together and in 
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terms of sections which can be restricted and collated. The equivalence 
between these two notions will be discussed, as well as the way in which 
a continuous map between spac~s leads to a geometric morphism-a 
suitable pair of adjoint functors between the sheaf categories. Chap
ter III introduces the more general notion of coverings in a category (a 
Grothendieck topology), the resulting "sites", as well as the topos formed 
as the category of all the sheaves of sets on such a site. Furthermore, 
it will be explained how any functor on a site can be transformed, in 
two steps, into a sheaf; this process of "sheafification" provides another 
basic example of a pair of adjoint functors. 

Thus, categories (from 1945) and adjoint functors between them, as 
revealed by D. M. Kan in 1957, form a language indispensable for the 
organization and understanding of our subject. Our categorical prelim
inaries (before Chapter I) may serve to remind the reader of such indis
pensable notions as "pullback", "adjoint functor", etc., while Chapter I 
will inter alia introduce a ubiquitous adjunction which will later provide 
a remarkable wealth of tensor products (Chapter VII). 

Categories, initially a convenient way of formulating exact sequences, 
diagram chasing, and axiomatic homology for topology, acquired inde
pendent life in the work of Ehresmann and his students in France, and 
in the United States in the work of Kan and Mac Lane, and in a group 
around Eilenberg at Columbia, which included in particular Barr, Freyd, 
Gray, Lawvere, Linton, and Tierney. Then in 1963 Lawvere embarked 
on the daring project of a purely categorical foundation of all mathe
matics, beginning with an appropriate axiomatization of the category 
of sets, thus replacing set membership by the composition of functions. 
When Lawvere heard of the properties of Grothendieck topoi, he soon 
observed that such a topos admits basic operations of set theory such 
as the formation of sets Y x of functions (all functions from X to Y) 
and of power sets P(X) (all subsets of X). At about the same time 
M. Tierney saw that Grothendieck's work could lead to an axiomatic 
study of sheaves. Subsequently, Lawvere and Tierney, working together 
at Dalhousie University, discovered an effective axiomatization of cat
egories of sheaves of sets (and, in particular, of the category of sets) 
via an appropriate formulation of set-theoretic properties. Thus they 
defined in an elementary way, free of all set-theoretic assumptions, the 
notion of an "elementary topos". The early definition underwent several 
changes and modifications to yield a final axiomatization of a beautiful 
and amazing simplicity: an elementary topos is a category with finite 
limits, function objects yX (defined as adjoints) for any two objects X 
and Y, and a power object P(X) for each object X; these are required to 
satisfy some simple basic axioms, much like the first-order properties of 
ordinary function sets and power sets in naive set theory. Chapter I will 
begin our exposition by exhibiting the construction of these function 
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objects and power objects in several concrete examples of elementary 
topoi~notably in categories of set-valued functors (presheaves). 

Every Grothendieck topos is an elementary topos, but not con
versely: the axiomatization by Lawvere and Tierney is both elementary 
(first-order logic, with no reference to set theory) and more inclusive 
than Grothendieck's. Nonetheless, many of the basic properties of sets 
and functions, and of sheaf categories, can be developed on the basis 
of the Lawvere-Tierney axioms, as shown in Chapter IV. Furthermore, 
Grothendieck's definition of topology in terms of coverings can be refor
mulated for any elementary topos in terms of "coverings" of subobjects, 
giving rise to a theory of sheaves and sheafification relative to a top os, 
as described in detail (among other things) in Chapter V. 

Lawvere's basic idea, as noted above, was that a topos is a "uni
verse of sets". In Chapter VI, we will take up this idea and compare 
it with some of the developments in set theory. Our first example is 
a topos-theoretic presentation of Cohen's work on the independence of 
the Continuum Hypothesis. The Continuum Hypothesis goes back to 
G. Cantor and can be formulated thus: any infinite subset B ~ R of 
the real line has either the same cardinality as the real line itself, or is 
denumerable (Le., has the cardinality of the set N of natural numbers). 
Godel had already shown in 1938 that the Continuum Hypothesis does 
not contradict the usual (Zermelo-Frrenkel) axioms of set theory, but 
for a long time it was unclear whether or not the Continuum Hypoth
esis follows from these Zermelo-Frrenkel axioms. In 1963, Paul Cohen 
showed that this was not the case; his method was what is now called 
"Cohen forcing". 

Since the cardinality of the set R of reals is the same as that of the 
powerset P(N) of the set of natural numbers, Cohen's problem can be 
phrased as follows: find a set B and injective functions 

N>----t B>----t P(N) (1) 

such that there exists no surjection N --» B, and no surjection B --» P(N); 
thus the cardinality of the set B lies strictly between the cardinality of 
N and that of P(N). To do this, Cohen considered a "universe" of sets 
(a model of set theory) and then expanded this universe by "forcing" 
an altogether new set B of subsets of N into this expanded universe, 
so that in this new universe the cardinality of B is strictly between the 
cardinalities of Nand P(N). This technique of expanding the "universe" 
by forcing was later rephrased by R. Solovay and D. S. Scott in terms of 
Boolean-valued models, where the truth predicate takes values not just 
"true" and "false", but all values in an arbitrary Boolean algebra. 

Shortly after this, Lawvere and Tierney made the remarkable dis
covery that Cohen's forcing technique could be explained in terms of 
topoi: indeed, using exactly Cohen's constructions, one obtains a topos 
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(a category of sheaves), in which there exists a sheaf B which lies strictly 
between the sheaf of natural numbers N and its power sheaf P(N), as 
in (1). Chapter VI will extensively discuss this sheaf-theoretic version 
of Cohen's proof. 

Cohen also used similar methods to show that the Axiom of Choice 
cannot be derived from the usual Zermelo-Frrenkel axioms of set theory. 
More recently, P. Freyd gave an elegant and noticeably simpler sheaf
theoretic proof of this fact. Freyd's construction will be presented in 
Chapter VI. 

Around the same time as Cohen, but evidently independently, the 
logician S. Kripke discovered semantical interpretations, first of modal 
logic and shortly after of intuitionistic logic, which bore a striking sim
ilarity to some aspects of Cohen's forcing technique. Sheaf theory also 
explains the relation between Cohen's forcing and Kripke's models for 
intuitionistic logic. 

Intuitionistic logic, and the mathematics based on it, originated with 
Brouwer's work on the foundations of mathematics, at the beginning of 
this century. He defined real numbers by choice sequences and insisted 
that all proofs be constructive. This meant that he did not allow proof 
by contradiction and hence that he excluded the classical tertium non 
datur (for all p, either p, or not p). His approach was not formal or ax
iomatic, but subsequently Heyting and others introduced formal systems 
of intuitionistic logic, weaker than classical logic. This may suggest that 
intuitionistic mathematics is a proper part of ordinary mathematics, but 
this is not so: for example, in intuitionistic mathematics a suitable de
scription of real numbers R leads to the result that all functions R --> R 
are continuous, as was already shown by Brouwer. 

In a topological space the complement of an open set U is closed but 
not usually open, so among the open sets the "negation" of U should be 
the interior of its complement. This has the consequence that the double 
negation of U is not necessarily equal to U. Thus, as observed first by 
Stone and Tarski, the algebra of open sets is not Boolean, but instead 
follows the rules of the intuitionistic propositional calculus. Since these 
rules were first formulated explicitly by A. Heyting, such an algebra is 
called a Heyting algebra. The "truth values" of any topos constitute 
such a Heyting algebra. The basic properties of these Heyting algebras 
are formulated in Chapter I. 

From this point of view it is not surprising that subobjects in a 
category of sheaves have a negation operator which belongs to a Heyting 
algebra. Moreover, there are quantifier operations on sheaves, defined 
by adjunction, which have exactly the properties of the corresponding 
quantifiers in intuitionistic logic. This leads to the remarkable result, 
foreshadowed by the observation of Stone and Tarski as well as by Scott's 
topological models, that the "intrinsic" logic of a topos is in general 
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intuitionistic. However, there can be particular sheaf categories, such as 
those constructed by Cohen and by Freyd, where the intuitionistic logic 
becomes ordinary (classical) logic. 

Kripke's semantics for intuitionistic logic can also be viewed as a de
scription of truth for the language of a suitable topos. And as a further 
illustration of the way in which topos theory incorporates Brouwer's 
ideas we will present at the end of Chapter VI a particular topos to
gether with its real numbers R in which all functions R -+ R are indeed 
continuous. 

Together with the notion of a topos, there is the notion of a map-
or a "geometric morphism" -between two topoi, defined as a pair of 
adjoint functors having certain additional exactness properties. 

A more familiar example of a pair of adjoint functors as a map comes 
from ring theory. If Rand 8 are commutative rings, consider a left 
R- and right 8-module M. For each left R-module B, the module M 
then yields by "homming" a left 8-module HomR(M, B). In the other 
direction, each left 8-module A yields by tensor product a left R-module 
M 08 A. The "tensor product" functor 

M 08 - : (8 - Mod) -+ (R - Mod) 

between module categories is actually a left adjoint to the Hom-functor 

HomR(M, - ): (R - Mod) -+ (8 - Mod) 

because of the familiar isomorphism (left adjoint on the left) 

between the corresponding Hom-sets. Moreover, when M is flat as an 
8-module (for example, when the ring 8 is a field) the functor M 08 -
preserves kernels and hence exact sequences, so is an "exact" functor. 

For topoi, the definition of geometric morphisms is modeled on the 
case of a continuous map between topological spaces. Indeed, such a 
map j: Y -+ X induces operations in both directions on sheaves. Thus, 
if we regard a sheaf A on the codomain space X as a family Ax of sets 
parametrized by the points x of X, then j induces a family Af(y) of sets 
parametrized by the points y E Y. The resulting sheaf on Y is called 
the "inverse image" of A and denoted by 1* A. On the other hand, a 
sheaf B on Y, regarded as a family of sections s over open sets V of Y, 
yields a new family of sections over open sets U of X by composition 
with j: the sections over such a U are exactly the composites so j where 
s is a section of B over the open set j-l(U) ~ Y. These new sections 
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over open sets in X form a sheaf f*B over the space X called the direct 
image of B. These two operations of inverse and direct image constitute 
a pair of adjoint functors, for which the inverse image f* is left adjoint 
to the direct image f*. Moreover, the left adjoint f* is (left) exact, in 
the sense that it preserves finite limits. 

By definition, a "geometric morphism" f: F ----> E between any two 
topoi E and F is such a pair of adjoint functors 

f*: E ----> F, 

where the left adjoint is required to be left exact. Such geometric mor
phisms arise not only from continuous maps between topological spaces, 
but also in many seemingly quite different contexts, as will be deuon
strated in Chapter VII. This chapter will also show that any geometric 
morphism between (Grothendieck) topoi can be viewed as a Hom-tensor 
adjunction, very similar to the familiar such adjunction for modules as 
just described. For topoi, exactness of the left adjoint (the tensor prod
uct) will again be analyzed in terms of a notion of "flatness". 

In topology, continuous maps lead naturally to the construction of 
classifying spaces. For example, there is a classifying space B for (com
plex) vector bundles. This means that there is a standard ("universal") 
vector bundle E over B such that, for any space X, maps from X into 
B correspond via E to vector bundles on X: the standard bundle E 
over B "pulls back" along any map X ----> B to produce a bundle over 
X, and every vector bundle over X is such a pullback of the standard 
bundle E. There is a similar "classifying space" for cohomology: For 
any integer n ::::: 0 and any abelian group 7r the Eilenberg-Mac Lane 
space K (7r, n) classifies cohomology, in the sense that for any space X 
(homotopy classes of) maps from X into K (7r, n) correspond to elements 
in the (singular) cohomology group Hn(x, 7r). 

In a similar way, many sorts of mathematical structures can be "clas
sified" by a suitable topos. For example, since a topos has products of 
objects, one can readily describe ring-objects in a topos. There is a spe
cial topos R, with a "universal" ring-object R in R, which is a classifying 
topos for ring-objects in topoi. This means that geometric morphisms 
f: E ----> R correspond exactly to ring-objects S in E: the inverse image 
of such a morphism will carry the universal ring R in R to a ring f* (R) 
in C, and any ring-object S in f is of the form f*(R) for a suitable 
geometric morphism f. 

As an introduction to the properties of "classifying topoi", we will 
present this example of the classifying topos R in Chapter VIII. In the 
discussion of this and other examples, the construction of the required 
geometric morphisms makes use of the general Hom-tensor adjunction of 
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Chapter VII. This adjunction makes another appearance in Chapter X, 
which provides a general existence theorem for classifying topoi. It is 
shown that for any mathematical structure, which can be described by 
"geometric" axioms in a suitable language, there is a classifying topos. 
The proof makes use of models of the language in various topoi, and 
relates to earlier uses (in Chapter VI) of formal languages in the context 
of to poi. 

A topos is, in a suitable sense, a generalized space, so should have 
(generalized!) points. Indeed, at a given point x of an ordinary topo
logical space X, one can erect each set A as a sort of "skyscraper" sheaf 
Ax on X concentrated around the point x. The resulting mapping from 
the category of sets into that of sheaves on X is, in fact, the direct im
age of a geometric morphism Sets --+ Sh(X). But an arbitrary topos 
E may not have enough "points" Sets --+ E in this sense. In order to 
develop an adequate comparison between topoi and spaces, it is useful 
to alter the definition of a space by describing a space not in terms of its 
points, but in terms of its open sets. The objects so defined by a lattice 
of open sets are called locales. Since sheaves can be described in terms 
of coverings by open sets, one can construct a topos Sh(X) consisting 
of all the sheaves of sets on such a locale X. Moreover, any "continu
ous" map Y --+ X between locales gives rise to a geometric morphism 
Sh(Y) --+ Sh(X) between such sheaf topoi. 

These locales are introduced in Chapter IX. There we show that 
every (Grothendieck) topos E has an underlying locale Loc(E). More
over, every topos is a "quotient" of the sheaf topos for some locale. 
More explicitly, from any top os E one can construct, by a method of 
Diaconescu, first a locale X, then the topos Sh(X) of sheaves on that 
locale, and finally a geometric morphism Sh(X) --+ E. This morphism 
is both a surjection (like a map onto a space) and open (in a suitable 
sense). Thus, E is indeed a quotient of its "Diaconescu cover" X. 

Those topoi which are "finitely generated" in an appropriate sense 
are said to be coherent. Deligne's theorem in Chapter IX states that each 
coherent topos E has "enough" points. More explicitly, the underlying 
locale Loc(£) is an ordinary topological space, and the Diaconescu cover 
of E can be replaced by an ordinary topological space X which "covers" 
E by way of a surjection from the topos Sh(X) of sheaves onto the 
coherent topos E. 
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At the end of the book, the reader will find an Appendix which 
discusses how various different sites can represent the same topos, and 
an Epilogue which provides some suggestions for further reading on the 
subject, beyond the "First Introduction" which this book is meant to 
provide. 

A reference to III.6.(11) is to equation (11) in section 6 of Chapter 
III, and similarly for theorems. 

One major correction has been made in this second printing. Dr. E. 
Vitale discovered that our proof of Theorem VII.9.1 was incomplete. We 
have provided a different proof, hopefully correct. 



Categorical Preliminaries 

Before embarking on the actual topic of this book, we wish to review 
briefly the basic notions that will be used from category theory. Many 
readers will be familiar with these preliminaries; they should immedi
ately start with Chapter I, referring back to these preliminaries whenever 
necessary. On the other hand, these preliminaries do not present suf
ficiently many examples and are by no means enough to constitute a 
proper introduction to category theory, and the reader who lacks suffi
cient categorical background is advised to first read some of the relevant 
parts of Mac Lane's [CWM-Categories for the Working Mathe
matician, 1971] (or some other such text), perhaps using the following 
pages as a guideline. 

A category C consists of a collection of objects (often denoted by 
capital letters, A, B, C, ... , X, ... ), a collection of morphisms (or maps 
or arrows) (f, g, ... ), and four operations; two of these operations as
sociate with each morphism j of C its domain dom(f) or do(f) and 
its codomain cod(f) or d l (f), respectively, both of which are objects of 

f 
C. One writes j: C ---+ D or C --+ D to indicate that j is a morphism 
of C with domain C and codomain D, and one says that j is a mor
phism jrom C to D. The other two operations are an operation which 
associates with each object C of C a morphism Ie (or ide) of C called 
the identity morphism of C and an operation of composition which as
sociates to any pair (f, g) of morphisms of C such that do (f) = d I (g) 
another morphism jog, their composite. These operations are required 
to satisfy the following axioms: 

(i) do(1c) = C = dl (le), 
(ii) do(f ° g) = do(g), dl(f ° g) = dl(f), 

(iii) IDoj=j, jole=j, 
(iv) (fog)oh=jo(goh). 

In (ii)-(iv), we assume that the compositions make sense; thus, (ii) is 
required to hold for any pair of arrows j and 9 with do(f) = dl(g), 
and (iii) is required to hold for any two objects C and D of C and any 
morphism j from C to D, etc. 

10 



Categorical Preliminaries 11 

For example, there is a category Sets whose objects are sets and 
whose morphisms are functions with the usual composition. Similarly, 
topological spaces and continuous maps between them form a category, 
as do groups and homomorphisms, or vector spaces (over R say) and 
linear maps. Any partially ordered set (P,::;) gives rise to a category, 
with the elements of P as objects, and with precisely one morphism from 
p to q iff p ::; q; in other words, the morphisms are pairs (p, q) such that 
p ::; q, and the domain and codomain operations on a pair are given by 
the first and second projections. Thus, the composition operation for P 
is uniquely determined by the transitivity of the order relation ::;. We 
mention in particular the categories 0,1,2, ... coming from the ordered 
sets 0, {O}, {O, 1}, ... of natural numbers with their usual ordering. 

An example of a different nature is obtained from a group G. Such a 
group can be regarded as a category with only one object, call it *, and 
with the elements of the group G as morphisms, where the multiplication 
of the group is used as the composition operation of the corresponding 
category. 

In an arbitrary category C, a morphism f: C -- D in C is called an 
isomorphism if there exists a morphism g: D -- C such that fog = 1D 
and go f = 1e. (This defines 9 uniquely, and 9 is called the inverse of 
f.) If such a morphism f exists, one says that C is isomorphic to D, 
and one writes f: C ~ D and C ~ D. The example of a category coming 
from a group G, as mentioned above, shows that a group is the same 
thing as a category with only one object in which each morphism is an 
isomorphism. 

A morphism f: C -- D is called an epi{morphism) if for any object 
E and any two parallel morphisms g,h: D::4E in C, gf = hf implies 
9 = h; one writes f: C --» D to indicate that f is an epimorphism. 
Dually, f: C -- D is called a mono{morphism) if for any object Band 
any two parallel morphisms g, h: B::4 C in C, fg = fh implies 9 = h; 
in this case, one writes f: C >-+ D. Two monomorphisms f: A>-+ D and 
g: B >-+ D with a common codomain D are called equivalent if there 
exists an isomorphism h: A~B with gh = f. A subobject of D is an 
equivalence class of monomorphisms into D. The collection Subc(D) of 
subobjects of D carries a natural partial order defined by [f] ::; [g] iff 
there is an h: A -- B such that f = gh, where [f] and [g] are the classes 
of f: A >-+ D and g: B >-+ D. 

For Sets (and other familiar categories) this definition matches the 
usual notion of subset (or subspace, etc.). 

If C is a category, we sometimes write Co for its collection of objects 
and C 1 for its collection of morphisms. For two objects C and D, the 
collection of morphisms with domain C and codomain D is denoted by 
one of the following three symbols, 

Homc(C,D), Hom(C,D), C(C, D). 



12 Categorical Preliminaries 

In general, we shall not be very explicit about set-theoretical founda
tions, and we shall tacitly assume we are working in some fixed universe 
U of sets. Members of U are then called small sets, whereas a collection 
of members of U which does not itself belong to U will sometimes be 
referred to as a large set. Given such an ambient universe U, a cate
gory C is locally small if for any two objects C and D of C the hom-set 
Home (C, D) is a small set, while C is called small if both Co and C 1 are 
small sets. Of the categories mentioned above, the categories of small 
sets, of small topological spaces, of small vector spaces, and of small 
groups are all locally small but not small. The categories coming from a 
small poset (P, :::;) or a small group G in the universe U are both small. 

Given a category C, one can form a new category COP, called the 
opposite or dual category of C, by taking the same objects but reversing 
the direction of all the morphisms and the order of all compositions. In 
other words, an arrow C --+ D in cop is the same thing as an arrow 
D --+ C in C (see [CWM, p. 33]). 

Given a category C and an object C of C, one can construct the 
comma category or the slice category C/C (read: C over C): objects 
of C / Care morphisms of C with codomain C, and morphisms in C / C 
from one such object f: D --+ C to another g: E --+ C are commutative 
triangles in C 

D _---:.h'----+) E 

\1 
C 

i.e., gh = f. (In [CWM], the notation C 1 C is used instead of C/C; 
cf. [CWM, p. 46].) The composition in C/C is defined from the com
position in C, in the obvious way (paste triangles side by side). 

Categories are compared by using functors. Given two categories 
C and D, a functor from C to D is an operation F which assigns to 
each object C of C an object F(C) of D, and to each morphism f of 
C a morphism F(f) of D, in such a way that F respects the domain 
and codomain as well as the identities and the composition: F(do(f)) = 
do(F(f)), F(d1(f)) = d1(F(f)), F(lc) = IF(c), and also F(f 0 g) = 
F(f) 0 F(g), whenever this makes sense. One writes F: C --+ D or 

C ~ D. For example, there is a functor from the category of topological 
spaces and continuous maps to the category of sets and functions, given 
by sending a space to the "underlying" set of its points. If C is an 
arbitrary category and C is an object of C, then the domain operation 
gives a functor 

F: C/C --+ C 
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then F is an equivalence (and G is sometimes called a quasi-inverse 
for F). Conversely, using a sufficiently strong axiom of choice, every 
equivalence F has a quasi-inverse; see [CWM, pp. 91-92]. 

Next, we recall several "universal" constructions. For example, in 
the category Sets of (small) sets and functions between them, there is 
the construction of the cartesian product A x B of two sets A and B. It 
comes together with two projections 71'1: A x B --+ A and 71'2: A x B --+ B. 
Usually, A x B is constructed as the set of all pairs (a, b) with a E A 
and b E B. However, up to isomorphism, the product A x B can also 
be described purely in terms of objects and morphisms in the category 
of sets, as follows. We say that an object X equipped with morphisms 
71'1 : X --+ A and 71'2: X --+ B is a product of A and B if for any other 
object Y and any two maps f: Y --+ A and g: Y --+ B there is a unique 
map h: Y --+ X such that 71'1 0 h = f and 71'2 0 h = g. [This unique map 
is then denoted by (f, g): Y --+ X or sometimes by (f, g) with pointed 
brackets.] This definition makes sense in any category and determines 
the object X (if it exists) to within isomorphism. It is common to denote 
a product of two objects A and B in an arbitrary category, if it exists, 
by A x B. Iteration then yields products of three or more factors. In 
an arbitrary category, the product of two objects mayor may not exist; 
for instance, in the category of topological spaces, the product of two 
spaces always exists, and it may be constructed as the cartesian product 
of the underlying sets, equipped with the familiar product topology. A 
product of an I-indexed family Ai is written IIiAi' For a poset (P, ::;), 
viewed as a category in the way explained above, the product of two 
objects p and q is their infimum (greatest lower bound), which mayor 
may not exist. 

Other special constructions of sets may also be characterized purely 
in categorical terms, i.e., in terms of objects and morphisms. For ex
ample, the singleton set {*} is the set S, unique up to isomorphism, for 
which there is exactly one morphism A --+ S from any other set A into 
S. In an arbitrary category C, an object C with the property that for 
any other object D of C there is one and only one morphism from D to 
C is called a terminal object of C. If it exists, it is, like {*}, unique up 
to isomorphism; it is often denoted by 1 or by 1e if necessary. 

A construction which plays a central role in this book is that of a 
pullback, or fibered product. Given two functions f: B --+ A and g: C --+ 

A between sets, one may construct their fibered product as the set 

B XA C = {(b, c) E B x C I f(b) = g(c)}. 

Thus, B x A C is a subset of the product, and, therefore, comes equipped 
with two projections 71'1: B XA C --+ Band 71'2 : B XA C --+ C which fit 
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into a commutative diagram 

B --,,----+) A; 
f 

15 

(1) 

i.e., f7rl = g7r2. This diagram has the property that given any other set 
X and functions {3: X ----t Band,: X ----t C such that f {3 = g" there is a 
unique function 8: X ----t B XA C with 7r18 = (3 and 7r28 =, [namely, the 
function 8(x) = ({3(x),,(x))]. This property determines the set B XA C 
up to isomorphism. One says that (1) is the "universal" commutative 
square on the data f and g. If A = {*}, B XA C is the product B x C. 

In a general category C, one says that a commutative square 

B --,---+) A 
f 

(2) 

is a pullback (square), or a fibered product, if it has the property just 
described for sets: given any object X of C and morphisms {3: X ----t B 
and ,: X ----t C with f{3 = g" there is a unique 8: X ----t P such that 
p8 = (3 and q8 =,. [This unique map 8 

B --:---+) A 
f 

is usually denoted by ({3,,).] Given f: B ----t A and g: C ----t A, the 
pullback P with its projections p and q is uniquely determined up to 
isomorphism (if it exists at all), and one usually writes B XA C for this 
pullback. If, for given f and g, the pullback (2) exists, one also says 
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that the arrow p is the pullback of 9 along f (and symmetrically that 
q is the pullback of f along g). Notice that p is a monomorphism if 9 
is. One says that monomorphisms are preserved by pullback along an 
arbitrary morphism. Incidentally, the notion of monomorphism can be 
described in terms of pullbacks. A morphism f: B ----+ A in a category C 
is a monomorphism iff the pullback of f along itself is an isomorphism, 
iff the square 

is a pullback. 

B ---:--+1 A 
f 

(3) 

There is an important "pasting-lemma" for pullback squares 
([CWM, p. 72]). Given a commutative diagram of the form 

Q ---tl P ---tl D 

111 (4) 

C ---+1 B ---+1 A 

in an arbitrary category C, the outer rectangle is a pullback if both inner 
squares are pullbacks; and conversely, if the outer rectangle as well as 
the right-hand square are pullbacks, then so is the left-hand square. 

Equalizers also deserve mention. For two parallel arrows f: A ----+ B 
and g: A ----+ B in a category C, the equalizer of f and 9 is a morphism 
e: E ----+ A such that fe = ge and which is universal with this property; 
that is, given any other morphism u: X ----+ A in C such that fu = gu, 
there is a unique v: X ----+ E such that ev = u: 

f 
E e IA====tjB vi/ 9 

X. 

Equalizers need not always exist. However, in the category of sets 
the equalizer of any pair of functions f, g: A =l B exists, and can be 
constructed as the set 

E = {a E A I f(a) = g(a) } 

where e: E ----+ A is set inclusion. 
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To each of the categorical notions of product, terminal object, pull
back, and equalizer, there is a corresponding dual notion, namely, that 
of a coproduct, an initial object, a pushout, and a coequalizer. For exam-

u v 
pIe, a diagram A -t X f- B in a category C is said to be a coproduct 
of A and B if the corresponding diagram A f- X -t B in cop is a 

u v 
product. In other words, A -t X f- B is a coproduct iff for any two 
morphisms j: A --+ Y and g: B --+ Y into another object Y, there is a 
unique morphism h: X --+ Y with hu = j and hv = g. The coproduct 
of A and B, if it exists, is unique up to isomorphism and is denoted by 

u v 
A + B or A II B. The maps A -t A II Band B -t A II B are called the 
coproduct inclusions. For example, the disjoint sum (= disjoint union) 
defines a coproduct in the category of sets. A coproduct of a family Ai 
for i E I is written as IIi Ai . 

Similarly, an object C of C is an initial object of C if it is a termi
nal object in COP. An initial object of C, if it exists, is unique up to 
isomorphism and is usually denoted by O. 

f 9 
Given morphisms A -t B and A -t C in C, a diagram 

C q ) P 

is called a pushout if the corresponding diagram in cop is a pullback. 
The pushout of j and g, if it exists, is unique up to isomorphism and is 
denoted by P = B IIA C. 

c 
Finally, a morphism B -t C in C is said to be a coequalizer of 

a given parallel pair of morphisms j, g: A:::::! B iff the corresponding 
diagram C --+ B:::::! A in cop is an equalizer. 

We now come to the central notion of adjoint functor, discussed at 
length in Chapter IV of [CWM]. Consider two categories A and X and 
two functors between them in opposite directions, say 

F: X --+ A G: A --+ X. (5) 

One says that G is right adjoint to F (and that F is left adjoint to G, 
notation: F --I G) when for any two objects X from X and A from A 
there is a natural bijection between morphisms 

f 
X-tGA 

h 
FX -tA 

(6) 

in the sense that each morphism j, as displayed, uniquely determines 
a morphism h, and conversely. This bijection is to be natural in the 
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following sense: given any morphisms 0:: A -> A' in A and ~: X' -> 

X in X, and corresponding arrows f and h as in (6) the (inevitable) 
composites also correspond under the bijection (6): 

e f Go. 
X' ---t X ---t GA --t GA' 

Fe h a . 
FX' ~ FX ---t A ----> A' 

(7) 

If we write this bijective correspondence as 

(): Homx(X, GA) ~ HomA(FX, A), (8) 

then this naturality condition can be expressed by the equation 

(}(G(o:) 0 f o~) = 0: 0 (}(f) 0 F(~). (9) 

Examples of adjoints abound in mathematics. The reader may find a 
list of examples on pp. 85-86 of [CWMJ, and will encounter numerous 
other examples in the course of this book. 

With an adjunction as above, there are associated certain so-called 
unit and counit morphisms. Given () as in (8), and an object X in X, 
setting A = F X gives a unique map 

7] = 7]x: X -> GFX (10) 

such that ()( 7]x) = I F(X)' This map 7]x is called the unit of the ad
junction (at X). If one takes ~ = lx, A = FX, f = 7], 0: = h, and 
A' = A in (7), the bottom composite is simply h: FX -> A, and it 

1) Gh 
corresponds to the top composite X --+ GFX --+ GA. In short, 7] 

determines the adjunction, since h corresponds to G(h) 07]x under the 
correspondence (6). This means that each f determines uniquely an h 
which makes the following triangle commute: 

X 1) IGFX FX 

~ 
; ; 

(11) IGh Ih 
I I 

v 

GA A. 

One expresses this by saying that 7] = 7]x is universal among arrows from 
X to an object of the form GA. This also implies that when the functor 
G is given, the object F X is uniquely determined up to isomorphism. In 
other words, given a functor G, its left adjoint F (if it exists) is unique 
up to natural isomorphism. Also, given G and a universal arrow from 
each object X to some object of the form GA, the left adjoint must 
exist. The naturality condition (7) [or (9)] also implies that the unit 
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morphisms TJx: X --+ GF X, for varying objects X of X, constitute a 
natural transformation from the identity functor on X to the composite 
functor GF: X --+ X for e(TJx o~) = F(~) = e(GF~ 0 TJx'). 

Dual to the unit of an adjunction is the counit. In the correspondence 
(6), take X = GA and f the identity on GA. The corresponding h is 
written 

E or EA: FGA --+ A. 

This defines a natural transformation from FG to the identity functor 
on A. Its universal property is this: to every h: F X --+ A there exists a 
unique f which makes the following triangle commute: 

X 
I 

fl 
I 

GA 

FX 

Ffl ~ (12) 

FGA lAo 

In other words, E is universal among arrows from an object in the image 
of F to A. As for the unit, this implies that given F, its right adjoint G 
(if it exists) is determined uniquely up to isomorphism. 

In the diagram (12), one may take h to be the identity on A = FX. 
The corresponding map f is then the unit TJx of the adjunction, and we 
obtain a commutative triangle 

(13) 

FGF~F G 

as on the left of (13). Its dual is the right-hand triangle. Conversely, 
two natural transformations E: FG --+ id and TJ: id --+ G F which satisfy 
these two triangular identities (13) serve to makl~ F a left adjoint of G 
[CWM, pp. 80-81]. 

As an example, consider the product category C x C of a given 
category C with itself. (C x C may also be viewed as a functor category 
C2, where 2 is the category with two distinct objects 0 and 1, and 
identity morphisms only.) If the product A x B of any pair of objects 
A and B in C exists, this gives a functor x : C x C --+ C which is right 
adjoint to the diagonal functor C --+ C x C sending A to (A, A). This 
follows immediately from the definition of the product. 

Suppose products exist in C. For a fixed object A of C, one may 
consider the functor 

A x - : C --+ C. (14) 
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If this functor has a right adjoint (necessarily unique up to isomorphism), 
this adjoint is denoted by 

(15) 

In this case A is said to be an exponentiable object of the category C, 
while the value BA of (15) for an object B of C is called the exponential 
of A and B. That ( - )A is right adjoint to A x - means that for any 
objects Band C of C there is a bijective correspondence 

(16) 

natural in Band C. It follows from the various uniqueness properties 
that BA is also a (contravariant!) functor of A (at least on those A 
which are exponentiable), and that (16) is also natural in A. The counit 
of this adjunction A x ( - ) -j ( - )A is a map 

(17) 

with the property that for any map h: A x C -+ B there is a unique f: 
C -+ BA such that EO (1 x f) = h: 

AxC. 

In this special case, the counit map is called the evaluation and denoted 
by e or ev: A X BA -+ B. 

A category C is called cartesian closed if it has finite products (i.e., 
a terminal object and binary products) and if all objects of Care ex
ponentiable. For example, the category of sets is cartesian closed: the 
exponential BA of two sets A and B is simply the set of all functions 
from A to B, and the bijective correspondence (16) is the familiar pro
cess of turning a function f: A x C -+ B of two variables into a function 
of a single variable in C with values in BA. 

We now turn to a brief discussion of limits and colimits. Let C 
be a fixed category. For a small category J (the "indexing category") 
we consider the functor category C J . An object of C J is also called a 
diagram in C of type J. For example, each object C of C determines a 
constant diagram .6.J (C) which has the same value C for all j E J; this 
defines the diagonal functor 

(18) 
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A natural transformation 7r from the constant diagram ~J (C) to some 
other diagram A of C J then consists of maps /j: C ----> Aj , one for each 
"index" j in J, all such that the triangle 

u: j ----> k, (19) 

A(j) ---+) A(k), 
A(u) 

commutes for every arrow u of J. Such a natural transformation is called 
a cone f: C ----> A on the diagram A with vertex C. In particular, a cone 
7r: L ----> A with vertex L is universal to A when to every cone f: C ----> A 
there is a unique map g: C ----> L in C with 7rj 0 9 = /j, for each j of J, 
as in the commutative diagram 

C ----------~---------~L 

~ 71 
A(j) 

A(u) 1 
A(k). 

u: j ----> k. 

This universal cone 7r: L ----> A (or, less accurately, its vertex L = lim A) 
+--J 

is called the limit of the diagram A. If every diagram A in C J has a 
limit in this sense, then the diagonal functor ~J has a right adjoint 

lim: C J ----> C. 
+--J 

(20) 

Indeed the counit of this adjunction is precisely the universal cone, which 
can be viewed as a natural transformation 

For example, if J = 2 = {O,l} is the discrete category with two 
objects 0 and 1 and only identity arrows, then a diagram in C J is just 
a pair of objects of C and a limit of that diagram is just a product 
of these objects. The product is thus a special case of limit. In the 
same way, a terminal object, a pullback, or an equalizer, as discussed 
above, are all special cases of limits (when J is the empty category, or 
the category -+ • +-, or • =4., respectively, where we have indicated 
only the nonidentity morphisms). 
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The dual of the notion of limit is that of colimit. A cocone with 
vertex C on a diagram A: J --) C is a map A --) ~J (C) in the functor 
category C J . The universal co cone on A, if it exists, is called the colimit 
of the diagram A, and its vertex is denoted by lim A. If the colimit of 

----'J 
any diagram of type J in C exists, this gives a functor 

lim: C J --) C 
----'J 

which is left adjoint to the diagonal ~J: C --) C J . 

(21) 

Now suppose G: C --) D is a functor. If J is a small index category, 
G induces a functor GJ : C J --) D J of diagrams in the obvious way. If 
limits of type J exist in C and D, one obtains a square of categories and 
functors 

lim 
f-J 

DJ -----:--:----+) D. 
lim 
f-J 

(22) 

The universal property of limits implies that there is a canonical natural 
transformation 

CtJ: Go lim --) lim oGJ . (23) 
f-J f-J 

One says that G preserves limits (of type J) if CtJ is a natural isomor
phism. A basic property is that G preserves limits of any type if G 
has a left adjoint. Or briefly, right ad joints preserve limits (see [CWM, 
p. 114]). Dually, one defines preservation of colimits. The corresponding 
basic fact is that left adjoints preserve co limits. 

We conclude these preliminaries by mentioning an important fact 
about limits and colimits in functor categories, namely, that these are 
computed pointwise. More precisely, let C and D be categories and con
sider the functor category CD. If J is a small category such that limits 
of type J exist in C, then the same is true in CD, and the evaluation 
functor ( - )D : CD --) C, for any given object D of D, preserves such 
limits. In other words, for a diagram A: J --) CD of type J in CD, one 
obtains a diagram AD: J --) C for each object D of D, by setting 

Adj) = A(j)(D). 

If every such diagram AD has a limit LD = lim AD in C then these 
f-J 

limits fit together to give a functor L: D --) C, which is a limit for the 
diagram A. So for each D in D 

(lim A)(D) ~ lim AD, 
f-J f-J 

(24) 
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where the limit on the left is taken in CD and that on the right in C. 
The corresponding fact for colimits also holds, and gives an isomor

phism 
(lim A)(D) ~ lim AD 
--+J --+J 

(25) 

analogous to (24). For details, we refer the reader to [CWM, p. 112]. 



I 
Categories of Functors 

Many constructions on various mathematical objects depend not just 
on the elements of those objects but also on the morphisms between 
them. Such constructions can thus be effectively formulated in the cor
responding category of objects. A "top os" is a category in which a 
number of the most basic such constructions (product, pullback, expo
nential, characteristic function, ... ) are always possible. With these 
constructions available, many other properties can be efficiently devel
oped. Superficially quite different categories, arising in geometry, topol
ogy, algebraic geometry, group representations, and set theory, all turn 
out to satisfy the axioms defining such a topos. 

1. The Categories at Issue 

Our exposition starts by describing a number of specific categories 
which are topoi, exhibiting in each one several of the basic constructions 
required. These examples will pave the way to the formulation of the 
axioms for a topos. 

In the following list of many such categories the most important 
examples are those numbered (i), (viii), (x), and (xi): sets, functor 
categories (presheaves), sheaves, and group actions. 

Here is the list of examples of topoi: 
(i) Sets, the category of all (small) sets S, T, and functions S --+ T 

between them. 
(ii) Sets x Sets, the category of all pairs of sets, with morphisms 

pairs of functions. 
(iii) Setsn, the category of all n-tuples of sets with morphisms all 

n-tuples of functions. Here n is a fixed natural number. 
(iv) BG, or G-Sets, the category of all representations of a fixed 

group G; where a representation of G consists of a set X together with 
a right action fJ: X x G --+ X of G on X. This action is usually denoted 
simply by a dot, as in fJ(x,g) = x . g; one requires fJ to satisfy the 
identities X· 1 = x and (x . g) . h = x . (gh), for all x E X and g, 
hE G. A morphism between two such representations (X,fJ) and (Y, v) 

24 
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is a function I: X --+ Y which respects the action [in the sense that 
I (x . g) = I (x) . 9 for all x E X and 9 E G). 

(v) BM, or M -Sets, the category of all representations X x M --+ X 
of a fixed monoid M on a variable set X; as in (iv), a morphism of BM 
is a function which respects the action. 

(vi) Sets2 , the category whose objects are all functions a: X --+ X' 
from one set X to a second set X', with the evident arrows (commutative 
squares) between these objects. 

(vii) SetsN , the category whose objects are all sequences X, 

of sets Xn and functions Xn --+ X n+1 , with the evident arrowS X --+ Y. 
It has been suggested (Lawvere) that such a sequence X be considered 
as a "set through time", where each Xn is regarded as the state of the 
variable set X at the (discrete) time n. The exponent N here is the 
linearly ordered set of natural numbers, to be regarded as a category, so 
that a sequence Xn is a functor N --+ Sets. 

(viii) SetsCOP
, where C is a fixed small category and cop its op

posite. This is the usual functor category, with objects all functors 
p : cop --+ Sets and arrows P --+ pI all natural transformations 
(): P --+ pI between such functors. Recall that such a () assigns to 
each object C of C a function ()e: P(C) --+ PI(C), in such a way that 
all diagrams 

pIC Pi!) PID, 

for I: D --+ C an arrow in C, are commutative. Each object P in this 
category is a contravariant set-valued functor on C; in anticipation of 
Example (x) below, such a P is also called a presheal on C. In the 
notation of the French school, 

(1) 

is the category of all presheaves on C. If P is a presheaf on C and 
x E P( C), the value P(f) (x) for an arrow I: D --+ C in C is called the 
restriction of x along I, and is often denoted by I or by a dot: 

P(f)(x) = xiI = x . f. (2) 

Here I is written after x, because the contravariant character of P is 
then expressed for a composite log as X· (f 0 g) = (x· f) . g. 
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Each object C of C gives rise to a presheaf y(C) on C, defined on 
an object D of C by 

y(C)(D) = Home(D,C) 

Q 

and on a morphism D' ---+ D, for u: D -+ C, by 

y(C)(o:): Home(D, C) -+ Home(D' , C) 

y(C)(o:)(u) = u 0 0:; 

(3) 

(4) 

or briefly, y(C) = Homc( -, C) is the contravariant Hom-functor. 
Presheaves which, up to isomorphism, are of this form are called repre
sentable presheaves or representable functors. If f: C1 -+ C2 is a mor
phism in C, there is a natural transformation y(Cd -+ y(C2 ) obtained 
by composition with f. This makes y into a functor 

cop 
y: C -+ Sets , C f---* Home( - , C) (5) 

from C to the contravariant functors on C (hence the exponent COP). 
It is called the Yoneda embedding. The Yoneda embedding is a full 
and faithful functor. This fact is a special case of the so-called Yoneda 
lemma, which asserts for an arbitrary presheaf P on C that there is 
a bijective correspondence between natural transformations y( C) -+ P 
and elements of the set P( C): 

8: Homa(Y(C), P) ~ P(C), (6) 

defined for 0:: y(C) -+ P by 8(0:) = o:c(lc) (see [CWM, p. 61]). 
(ix) Sets/ J, the comma category or slice category, with objects all 

sets over the fixed set J. Here, a set over J is by definition a function 
h: X -+ J from a (variable) set X to J, and with arrows commuting 
triangles as in (8) below. We also think of X (via h) as a set over the 
"base" J. 

(x) Sh(X), the category of all sheaves of sets over a fixed topological 
space X. This important example will be explained in Chapter II below. 

(xi) Let G be a topological group. The category BG of continuous 
G-sets has as objects sets X equipped with a right action J-t: X x G -+ X, 
as in (iv), with the additional requirement that this action be continuous 
when X is equipped with the discrete topology. The morphisms are the 
same as those described in (iv). 

(xii) Simplicial sets: a simplicial object S in a category C is a family 
Sn for n 2:: 0 of objects of C, together with for each n two families of 
morphisms of C 

i = 0, ... ,n 
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(and with n > 0 in the case of di ) which satisfy the identities 

SiSj = Sj+1Si, 

dis j = sj-1di , 

= 1, 

= sjdi - 1 , 

i < j, 
i ~ j, 

i < j, 
i = j and i = j + 1, 

i>j+1. 
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(7) 

In particular, a simplicial object in Sets is called a simplicial set. If 
~n is a "standard" affine n-simplex, a continuous map f: ~n ---. X 
into a topological space X is called a singular simplex for X. Such a 
simplex f has n + 1 faces dd: ~n-l ---. X determined by restricting 
f to the ith face of ~n; also collapsing vertex i to vertex i + 1 gives 
n+ 1 maps ~n+l ---. ~n: composed with f they yield n+ 1 "degenerate" 
singular simplices sd. Taking di to be the ith face and Si to be the 
ith degeneracy makes the collection of all such singular simplices of X 
into a simplicial set---one from which the homology, cohomology, and 
homotopy of X can be computed. For many purposes, the category of 
topological spaces may be replaced by the category of simplicial sets. 

(xiii) FinSets, the category of all finite sets and functions between 
them. 

(xiv) FinSetsCOP
, the category of all functors from C (a fixed finite 

category) to FinSets. 
In this list the decisive types of examples are (i), (viii), and (x): 

Sets, set-valued functors (presheaves), and sheaves. These correspond 
to the major thrusts of our subject, toward the foundation of sets, the 
manipulation of functor categories, and the properties of sheaf coho
mology. As a matter of fact, each of the categories (i)-(vii) above is a 
special case of a functor category SetsCOP -and in each case, the arrows 
of the category in question are precisely the natural transformations of 
functors-for the following choices of the category: 

(i) C is the category 1 with one object and one (identity) arrow. 

(ii) C = 1+1 is the discrete category with two objects (and therefore 
with exactly two arrows, the identity arrows of these objects). 

(iii) C is the discrete category with n objects. 

(iv) C is the group G, regarded as a category with one object, with 
arrows the elements of G, and with composition the product in the group 
G. 

(v) C is the monoid M, regarded in the same way as a one-object 
category. 

(vi) C = 2 is the "arrow category": The category with exactly two 
objects 0 and 1 and one nonidentity arrow 0 ---. 1. 
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(vii) C = N°P is the category whose objects are the natural numbers 
n = 0,1,2, ... , and whose arrows n ---+ m are exactly the pairs (n, m) 
with n 2: m. 

Extending (vi) and (vii), recall that any ordered or preordered set P 
will yield a category P with objects the elements pEP and arrows the 
pairs (p, q) with p ~ q in the given preorder. For example, the ordered 
set R of real numbers yields in this way the functor category SetsR 

whose objects are "sets seen through (real) time" [ef. (vii) above]. 
The comma category described in (ix) is almost a functor category. 

An object of this comma category is an arrow h: X ---+ J of Sets, while 
an arrow f: h ---+ h' between two such objects is an arrow f: X ---+ X' 
of Sets such that the triangular diagram 

X __ .:..f_--+) X' 

~~ (8) 

J 

commutes. Each such object h: X ---+ J over J determines a J-indexed 
family {Hj I j E J} of sets, consisting of the sets 

H j = h-1{j} = {x I x E X and hx =j}, 

and then each arrow f: h ---+ h' as in (8) determines a J-indexed family 
of functions fJ: Hj ---+ Hj, j E J. If we regard the set J here as a 
discrete category (with objects all elements j E J and arrows only the 
identity arrows j ---+ j), then each J-indexed family of sets is just a 
functor H: J ---+ Sets and each J-indexed family of functions fJ is just 
a natural transformation F: H ---+ H' between these functors. In other 
words, the assignments h f-t {Hj }, f f-t {fJ} constitute a functor 

L: Sets/J ---+ SetsJ , 

from the comma category to the functor category. 
Reciprocally, each functor H: J ---+ Sets determines a set h: X ---+ J 

over J, with X the disjoint union (the coproduct) X = IJHj of the sets 
H j for j E J and h the function which sends each x E X into its "index" 
(that j E J with x E H j ). These two reciprocal constructions amount 
to constructing two functors Land M 

Sets/ J ( L ) SetsJ 
M 

(9) 

with both LM and M L naturally isomorphic to the respective identity 
functors. Therefore, these two constructions provide an equivalence of 
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the comma category Sets/ J to the functor category SetsJ . This equiva
lence is not an isomorphism of categories because the composite functor 
M L is not the identity, on account of the choice available in the forma
tion of the disjoint union involved in the construction of M. (That is, 
many different sets over J correspond under L to the same functor on 
J.) 

The category of simplicial sets is also a functor category: 

~op 

SimpSets = Sets , (10) 

where ~ is the category whose objects are all the finite ordered sets 
[n] = {O, 1, ... ,n} and whose morphisms [n] ---t [m] are those maps 
¢: [n] --+ [m] which preserve the order (i.e., i ::; j implies ¢i ::; ¢j). The 
isomorphism (10) 

comes about because the object [n] in ~ can be regarded as the 
ordered set of vertices 0,1, ... ,n of the standard n-simplex ~n with ith 

face spanned by 0,1, ... ,7, ... , n, omitting i. Details may be found in 
many sources, for example in [Mac Lane, Homology 1963, p. 233; see 
also VIII §7]. 

2. Pullbacks 

We will make extensive use of pullbacks. Recall that a pullback for 
I 9 

a diagram X -+ B +- Y in a category C is a commutative square, with 
vertex P, on the edges I and g, as below, which is universal among such 
squares: To any other such commutative square, with vertex Q, on these 
edges, as in (1), 

P 
,1 

9 ' I 

I' -------> Y 

19 
X --/::----+) B, 

Q ---~---> Y 

: 
91 (1) 90 I 

I 

X ---:----t) B 
I 

there is a unique arrow h: Q ---t P with 10 = f' h and go = g' h. As usual, 
this universality characterizes the pullback square (when it exists) up to 
isomorphism; its vertex P is called the fibered product, P = X X B Y of 
X and Y (relative to f and g). 

In Sets, the pullback P in (1) always exists and is (isomorphic to) 
the set of all those ordered pairs (x, y) of elements x EX, Y E Y with 
I x = gy in B. In particular, if Y is a subset of Band g: Y ---t B the 
inclusion, the pullback P is (isomorphic to) the inverse image 1-1 of Y 
in X. If both I and g are inclusions of subsets of B, their pullback P "is" 
the intersection of these subsets. If the set g: Y ---t B over B is regarded 
as a B-indexed set {Gb}, its pullback P along f is the X-indexed set 
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{ G~ } with G~ = G fx; in pictures: over each point x E X put a copy 
G~ of the set given over Ix. Similarly, if 9 is a fiber bundle of some sort, 
g' is (in a suitable category) the familiar induced fiber bundle. 

The pullback exists in any functor category SetsCOP and is con
structed "pointwise" (as pointed out in the preliminaries): If X, Y, and 
B in (1) are functors to Sets, with I and 9 natural transformations, 
then P: cop ---> Sets is that functor which sends each C E C to the set 
PC which is the pullback in Sets of XC ---> BC and YC ---> BC. In 
other words, (X XB Y)(C) ~ X(C) XB(C) Y(C). 

Consider the pullback P of I with itself [I = gin (1)]. In Sets, Pis 
the set of all pairs (x, y) of elements in X with Ix = Iy; in other words, 
P C X x X is the equivalence relation which I induces on its domain X. 
In any category, the pullback P of I with I, when it exists, is a parallel 
pair of arrows P =4 X called the kernel pair of I. In particular, an arrow 
I is monic (= left cancelable) precisely when, up to isomorphism, both 
arrows in its kernel pair are the identity X ---> X. In particular, any 
functor preserving pullbacks preserves monics. 

In any category, a pullback g' of a monic 9 along any arrow is itself 
monic; this may be proved by a simple formal argument. In Sets, it 
is also true that the pullback g' of an epi is always epi (epi = right 
cancelable arrow); this is evident from the description of the pullback in 
Sets by elements, but there is no simple formal (categorical) argument. 
This property does also hold in all Examples (i)-(xiv), but the common 
reason, as we shall see in Chapter IV, is deeper. 

The one-point set {*} may be characterized (up to isomorphism 
again!) as a terminal object in Sets: To every set X, there is a unique 
function X ---> {*}. In the same way, each of our categories (ii)-(xiv) has 
a terminal object, call it 1; for example, the terminal object in SetsCOP 

is the functor whose value at every object C is {*}. 

Pullbacks and terminal objects are limits; specifically, a pullback in 
a category C is a limit of a functor (. -+ • +-- .) ---> C, while a terminal 
object in C is a limit of a (the) functor from the empty category 0 into 
C. Recall that a finite limit in C means a limit of a functor J ---> C 
where J is a finite category. A category C with a terminal object 1 and 
with all pullbacks has all finite limits: It has binary products, since the 
product X x Y can be constructed as the pullback X -+ 1 +-- Y, it 
has products of no factors (the terminal 1), and hence it has all finite 
products. The equalizer e of a pair I, g: X =4 Y can also be constructed 
as a pullback, namely, that of the map (I, g): X ---> Y x Y and the 



3. Characteristic Functions of Subobjects 

diagonal D.: 
E _=-1 e_=-"g,--e--+I Y 

el 1 ~ 
X--~)Yxy. 

(f,g) 
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This shows that a category with pullbacks and a terminal object has all 
finite limits because these can be constructed from finite products and 
equalizers [CWM, p. 109J. 

All the categories in our list (i)-(xiv) have finite limits: We have seen 
how to construct the terminal object and pullbacks in Sets, so Sets has 
finite limits. Consequently, so does a functor category Sets cop , since 
limits in SetsCOP can be computed pointwise, as just pointed out [ef. also 
(24) of the preliminariesJ. In particular, this takes care of Examples (i)
(ix), and (xii), (xiii), and (xiv). Finite limits in the category of sheaves 
on a topological space X [Example (x) of §lJ will be treated in Chap
ter II. This leaves the Example (xi) of the category BG of continuous 
G-sets, which is not a functor category. But if a: X -+ Band b: Y -+ B 
are maps of continuous G-sets, then their pullback X x B Y in Sets has 
an obvious coordinatewise action by G: 

(x, y) . 9 = (x· g, y. g) 

for x E X and y E Y with a(x) = b(y), and 9 E G. This action is 
continuous if the actions on X and Yare each continuous. So X X B Y 
is again a continuous G-set, and this is easily seen to define the pullback 
in the category BG. Since BG has a terminal object (the one-point set 
with its unique action by G), it follows that BG has all finite limits and 
that these limits can all be constructed as limits of the underlying sets. 
In other words, the "forgetful" functor U: BG -+ Sets which forgets 
the action, U(X, /.1) = X, preserves all finite limits. 

3. Characteristic Functions of Subobjects 

In Sets, a subset SeX may be described in two very different ways: 
As the monic function S >---+ X given by inclusion or as a characteristic 
function <Ps defined as usual for elements x E X by 

¢s(x) = { 
0, 

1, 

XES, 

x tj. S. 

Here we take the values of <Ps in the typical 2-point set {O, 1 }; it is the 
set of "truth values" , where we have chosen ° as the value "true". It is 
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convenient to regard true as the following subobject (the monic arrow) 
from 1 to 2: 

true: 1 = {O} >---+ 2 = {O, I}, o I-t O. (1) 

With this notation, each subset S can evidently be recovered (up to 
equivalence) from its characteristic function ¢s as the pullback of true 
along ¢s: 

S I 1 

ml ltrue (2) 

X '--,fs---> 2. 

In this diagram, S -+ 1 is the unique function from S to the terminal ob
ject (one-point set) 1, and 1 -+ 2 is the fixed monic defined in (1); given 
the monic m, there is a unique ¢ (namely, the characteristic function) 
such that the diagram (2) is a pullback. 

In Section 4, we will see that subobjects in our other typical cate
gories have similar characteristic functions, which take values not in 2, 
but in a suitable object 0 of "truth-values". 

Definition. In a category C with finite limits, a subobject classifier 
is a monic, true: 1 -+ 0, such that to every monic S >---+ X in C there is 
a unique arrow ¢ which, with the given monic, forms a pullback square 

S----+11 

I (3) 

X ---;r--> O. 

In other words, every subobject is uniquely a pullback of a "univer
sal" monic true. 

This property amounts to saying that the subobject functor is rep
resentable (i.e., isomorphic to a Hom-functor). In detail, a subobject 
of an object X in any category C is an equivalence class of monics 
m: S >---+ X to X (d. the preliminaries). By a familiar abuse of language, 
we say that the subobject is S or is m, meaning always the equivalence 
class of m. Then, Subc X is the set of all subobjects of X in the cat
egory C; this set is partially ordered under inclusion. The category C 
is said to be well-powered when Subc X is isomorphic to a small set 
for all X; all of our typical categories are well-powered. Now given an 
arrow f: Y -+ X in C, the pullback of any monic m: S >---+ X along f 
is a monic m' : S' >---+ Y, and the assignment m I-t m' defines a func
tion Subc f: Subc X -+ Subc Y; when C is well-powered, this makes 
Subc : cop -+ Sets a functor to Sets. Briefly, Sub is a functor "by 
pullback" . 
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Proposition 1. A category C with finite limits and small Hom
sets has a subobject classifier if and only if there is an object 0 and an 
isomorphism 

ex: Sube(X) ~ Home(X, 0), 

natural for X E C. When this holds, C is well-powered. 

(4) 

Proof: Given a subobject classifier as in (3), the correspondence 
ex sending the equivalence class of each monic 8 >--+ X to its (unique) 
"characteristic function" ¢: X -+ 0 is a bijection for each X, as required 
for (4). Now Sube(X) is a (contravariant) functor of X by pullback (= 
inverse image); so to prove this bijection natural, we must show that 
pullback along f: Y -+ X in Sube ( - ) corresponds to composition with 
f in Home( -,0). This is immediate by the elementary fact that two 
pullback squares placed side by side, as in 

8 f -------+) 8 -----+) 1 

I I 
Y ---:------+) X -------+) 0, 

f 

yield a pullback (rectangle). Since the Hom-sets are all small, the bijec
tion (4) also proves C well-powered. 

Conversely, suppose that (4) is a bijection, natural in X. This states 
that Sube : cop -+ Sets is naturally isomorphic to Home ( -,0); that 
is, that the functor Sube is representable [ef. §1(5)], with representing
object O. As for any such representation, some subobject to: 0 0 >--+ 0 of 
o corresponds to the identity 1: 0>--+ 0, while each subobject 8>--+ X of 
X corresponds to an arrow ¢ : X -+ O. By naturality of e, the diagram 

Sub(O) Hom(O,O) 0 0 f-i ---+) 1 

Sub(</» 1 1 Hom(</>,O) 1 1 
Sub(X) ~ Hom(X, 0), 81-1 ---t) ¢ 

must commute; this states that 8 = Sub(¢)Oo, and hence that each 
subobject 5 is the pullback of no along a unique "characteristic function" 
¢, as in 

</>' 8 --'-------+) 0 0 

I (5) 

X--</>--t) O. 
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This diagram is like the definition (3) of a subobject classifier, but it 
remains to show that no is actually a terminal object in C. But taking 
S ~ X in (5) to be the identity X ~ X gives a map <//: X ~ no. If 
there were two maps <//, ¢": X ~ no then, since to is monic, both the 
squares 

X )n, X d"2, 
toq,' toq," 

would trivially be pullbacks. Therefore, by the uniqueness of ¢ in (5), 
to¢' = to¢". As to is monic, this gives ¢' = ¢". Hence each object X 
has a unique map ¢': X ~ no, so no is terminal. 

As with any representation of a functor, this result proves that the 
subobject classifier of a category, if it exists, is unique up to an isomor
phism. 

The idea of a "subobject classifier" is modeled on other "classifying" 
ideas in topology. A decisive example is that of the classifying bundle for 
a Lie group G. As we will subsequently indicate, a G-bundle over X is 
a suitable continuous map 7r: E ~ X of spaces for which G acts on the 
right on E in such a way that 7re = 7re' for e and e' in E iff e = e' 9 for a 
unique element 9 in the group G. If G-Bund(X) is the (suitably defined) 
set of all G-bundles over some space X, then pullback of a G-bundle E ~ 
X along a continuous map f: Y ~ X yields a G-bundle over Y, and 
this makes G-Bund a contravariant functor of X (again "by pullback"). 
Then a bundle V ~ B is said to be a universal G-bundle (and B is the 
"classifying space" for G) if every G-bundle E ~ X can be obtained 
from V ~ B by pullback along some X ~ B. For G = Ok the real 
orthogonal group in k variables, there is a famous such classifying bundle 
V. For large n, it is the Stiefel manifold Vn+k+l,k whose points are all 
orthonormal k-frames of vectors VI,"" Vk in Rn+k+l. The orthogonal 
group Ok acts continuously on these frames VI,"" vk in the evident way, 
so that two frames are equivalent under the action of Ok if and only if 
they span the same k-plane. Therefore the projection p: V ~ VI Ok of 
the Stiefel manifold on its quotient by this action is an Ok-bundle, and 
its base space V 10k is precisely the Grassmann manifold Mn+k+l,k of 
all k-planes in Rn+k+I. A standard argument [Steenrod, 1951] shows 
that p is a classifying bundle for principal Ok-bundles over n-complexes 
K, in the sense that any such bundle can be obtained from p by pullback 
along a continuous map f: K ~ V 10k which is unique up to homotopy. 

Classifying bundles have played a major role in topology; we shall 
see that classifying subobjects playa similarly decisive role in category 
theory. Later on in this book, we shall see that the analogous idea of a 
classifying topos is central in our subject. 
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4. Typical Subobject Classifiers 

Each of our typical categories (i)-(xiv) has a subobject classifier. We 
will now explicitly construct these classifiers in order to exemplify the 
general notion. 

The classifier true: 1 --'> 2 for Sets is evidently also a subobject 
classifier for FinSets; indeed, the usual characteristic functions are still 
effective for finite sets. 

In Sets x Sets, an arrow is a pair of functions f: Y --'> X, f': Y' --'> 

X'. The pair of subsets (1 C 2, 1 C 2) is a subobject classifier, and 
the characteristic arrow of any subobject (8 eX, 8 ' c X') is evidently 
just the pair of characteristic functions (¢s: X --'> 2, ¢Sl: X' --'> 2) from 
the category Sets. Thus, there are, in 2 x 2, four "truth-values". The 
corresponding subobject classifier for Setsn has 2n truth-values; as we 
shall see, it is the Boolean algebra of all 2n subsets of n. 

In the category Be = e-Sets of representations of e [Example (iv) 
of §1]' an object is an action X x e --'> X of the fixed group e on some 
set X, and a subobject is just a subset 8 c X closed under this action 
(i.e., s . 9 E 8 whenever s E 8 and gEe). The complement of 8 in X 
is thus also invariant under this action, so we can still use the ordinary 
characteristic function ¢s : X --'> 2 of 8, where the subobject classifier is 
the usual map true: 1 --'> 2, with e acting trivially on both sets 1 and 2. 
Exactly the same argument applies in the case where e is a topological 
group [Example (xi) of §1]. 

For BM [Example (v) of §1]' an object is again a right action X x 
M --'> X of the fixed monoid M on some set X, and a subobject is 
again just a subset 8 c X closed under this action, but the previous 
characteristic function will not do because the complement of 8 need 
not be closed under this action. Instead, we may define a function ¢s 
sending each x E X to the set L of all those C E M with x . C E 8. This 
set L is a "right ideal" of M (a subset of M mapped into itself by the 
right action of M on itself, via right multiplication). Therefore, take 
0= OM to be the set of all right ideals L of M with action 0 x M --'> 0 
defined by L'm = {k E M I m·k E L} for LEO and mE M. Then, the 
function ¢s above is an arrow ¢s: X --'> 0; in particular, it determines 
the given 8 as the inverse image of the right ideal M. Therefore, the 
subobject classifier is the function trueM: 1>---> OM which sends the one 
point of the object 1 to the "maximal" right ideal M E OM. 

In case M is a group G the only right ideals are G and 0, so this 
Oc reduces to the previous set 2 with trivial e-action. In case M is the 
additive monoid of natural numbers, the right ideals are the empty set 
and the sets of numbers larger than some fixed number n. 

For the arrow category 2 and Sets2 , a subset (80 .::...." 8d >--->(Xo .::...." 
Xd is a pair of subsets 8 0 c X o, 8 1 C Xl with aBo C 8 1 , Relative to 
this subset 8 there are three sorts of elements x of Xo: Those x in 8 0 , 
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those x tf. 80 with ax E 8 1 , and those x with ax tf. 8 1 . Define </>ox = 0,1, 
or 2 accordingly. Then, </>0 on 8 0, with the usual characteristic function 
</>1 of 8 1 c Xl, is an arrow </> = (</>0, </>d to the object f2 displayed below, 

X: Xo a ) Xl 

¢1 ¢ol 1¢1 aO = 0, a1 = 0, a2 = 1, 

f2: {0,1,2} a ) {O, I}, 

1 
in Sets2 , and 8 0 ---4 8 1 is the inverse image of ({O} --+ {O}) = 1>-+ f2. 

In brief, this characteristic function </> = (</>0, </>1 ) is that arrow which 
specifies whether "x is in 8" is "true" always, only at 1, or never. One 
may say that </> gives the "time till truth" . 

For SetsN , a subobject of X has the form of a sequence 8 of subsets 

8: 8 0 ) 8 1 ) 8 2 ) 8 3 ... 

I I I I I 
X Xo a ) Xl a ) X 2 a ) x 3 ··· 

with a8k C 8k+l; for example, if X k is constant and each a = 1, this 8 
is a monotone increasing sequence of subsets. For any x E X k we can 
then measure the "time till truth" (the time till inclusion in 8) by the 
function </>k on X k defined as 

</>kX = the least n with anx E 8 k+n, if such exists, 

= 00 otherwise. 

Then </>k: X k ---4 N + {oo}, so the sequence of these maps </>k is an arrow 
to the sequence of sets 

f2: N+{oo}~N+{oo}~N+{oo}---+··· (1) 

where each 7 has 7(0) = 0, 7(n + 1) = n for n =I- 0 and 7(00) = 00. 
Then, f2 E SetsN has 1: {O} ---4 {O} ---4 {O} ---4 ••• as subobject, and the 
given 8 is the pullback of 1 along </>. In brief, "time till truth" provides 
a subobject classifier f2. 

For an arbitrary small category C, a subfunctor of P: cop ---4 Sets 
is defined to be another functor Q: cop ---4 Sets with each QC a sub
set of PC and each Q f: Q D ---4 QC a restriction of P f, for all arrows 
f: C ---4 D of C. The inclusion Q ---4 P is then a monic arrow in 

cop 
the functor category Sets ,so that each subfunctor Q is a subob-
ject. Conversely, all subobjects are given by subfunctors; if a natural 
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transformation e: R >-+ P is monie in the functor category, then each 
function ec: RC -+ PC is an injection (monies, like limits in the func
tor category, are taken pointwise). For each C let QC be the image of 
RC >-+ PC; thus Q is manifestly a subfunctor of P, and the given R is 
equivalent (as a subobject) to Q. 

- cop . . 
For an arbitrary presheaf category C = Sets ,If there IS a sub-

object classifier 0, it must, in particular, classify the subobjects of each 
representable presheaf yC = Home ( - , C): cop -+ Sets. Therefore, 

SUbe(Homc( -, C)) ~ Home (Home( -, C), 0) = Nat(Home( -, C), 0). 

By the Yoneda lemma [see §1(6) above], the set on the right is (up to 
isomorphism) O(C). Thus the subobject classifier 0, if it exists, must 
be the functor 0: cop -+ Sets with object function 

O(C) = Sube(Home( - ,C)) 

= {S I Sa subfunctor of Home( -, C)}, 
(2) 

and with a suitable mapping function. 
To understand this it is customary and useful to use an alterna

tive terminology for subfunctors of a representable functor Hom( - , C). 
Given an object C in the category C, a sieve on C (in French, a "crible" 
on C) is a set S of arrows with codomain C such that 

f E S and the composite fh is defined implies fh E S. 

If we think of the arrows f E S as those paths which are "allowed to 
get through" to C, this definition means that any path to some other 
B followed by an allowed path from B to C is allowed. For example, 
if the category C is a monoid M, a sieve is just a right ideal in M; if 
the category C is a partially ordered set regarded as a category, a sieve 
on C E C is a set S of elements B :s; C such that A :s; B E S implies 
A E S: If B "goes through" the sieve, so does anything smaller: a sieve 
is a "downwards closed" subset. 

Now if Q c Home ( -, C) is a subfunctor, the set 

S = {f I for some object A, f: A -+ C and f E Q(A)} 

is clearly a sieve on C. Conversely, given a sieve S on C, the definition 

Q(A) = { f If: A -+ C and f E S} ~ Home(A, C) 

yields a functor Q: cop -+ Sets which is a subfunctor of the Hom
functor Home( -, C). The passages S to Q and Q to S are reciprocal; 
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hence, we can identify sieves and subfunctors in any locally small cate
gory C. Thus, 

Sieve on C = Subfunctor of Home( -, C). (3) 

Moreover, for any arrow g: B --t C, a subobject Q of the functor 
Homc( -, C) determines a subobject of Homc( -, B) by pullback along 
g, and similarly each sieve S on C determines the following sieve on B: 

S· 9 = {h I go hE S}. 

With this motivation, the proposed subobject classifier 0 for the 
functor category SetsCOP is defined on objects by 

o (C) = { SIS is a sieve on C in C } (4) 

and on arrows g: C' --t C by 

( - ) . g: O(C) --t O(C'), S· 9 = {h I go hE S}. (5) 

For an object C of C, the set t( C) of all arrows into C is a sieve, called 
the maximal sieve on C. These maximal sieves patch together to give a 
morphism (natural transformation ) 

true: 1 --t 0 

cop 
in the pre sheaf category Sets . 

(6) 

To see that (6) defines a sub object classifier in SetsCOP
, consider any 

subfunctor Q of a given functor P: cop --t Sets. Then each morphism 
f: A --t C in C determines a function P(f): P( C) --t P(A) in Sets 
which mayor may not take a given x E P(C) into Q(A) ~ P(A). For a 
given x E P(C) set 

¢o(x) = {f I x· f E Q(dom(f))}, (7) 

where f ranges over all morphisms in C with codomain C. Then ¢c(x) 
is a sieve on C, and ¢: P --t 0 is natural. Moreover, ¢o( x) is the 
maximal sieve t(C) iff x E Q(C), so the given subfunctor Q ~ P is the 
pullback along ¢ of the map "true" defined in (6) above. 

Q -----)011 

I 1 true (8) 

P--",--+IO. 
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This shows that ¢ is indeed a possible characteristic map for the 
subfunctor Q. But this ¢ is also the unique natural transformation 
B: P -> 0 making this diagram into a pullback. Indeed, given x E P( C) 
and f: A -> C, the pullback condition means that x . f E Q(A) iff 
BA(x· f) = trueA; by naturality of B, this is equivalent to Bc(x)-f = trueA 
and this, in turn, by the definition (5), means that f E Bc(x). The ele
ments f of Bc(x) are thus exactly those f with X· f E Q(A), i.e., those 
f E ¢c(x) as defined in (7). Thus, the definition (7) of ¢ is forced 
upon us if (8) is to be a pullback. Hence, we have shown that the mono 
true: 1 >-t 0 defined in (6) provides a subobject classifier for the presheaf 

~ cop 
category C = Sets . 

Intuitively, the sieve ¢c (x) considered in (7) is the set of all those 
paths f to C which translate the element x of P( C) into the subfunctor 
Q. As the set of "paths to truth" , it clearly agrees with the characteristic 
arrows we have already constructed for the special functor categories 
Sets2 , SetsM , and SetsN. 

We have assumed C small because we must. Were C large--say the 
ordered set of all small ordinal numbers~the number of paths to truth 
would not in general be small, hence not an object of Sets. 

The exhibition of subobject classifiers for our typical categories is 
completed by noting, for any set J, that the projection J x 2 -> J is a 
classifier for the category Sets/ J, while in FinSetsCOP with C finite, the 
set O( C) of sieves on C is again finite so provides a suitable subobject 
classifier O. 

Observe, however, that there are many "reasonable" categories with 
no such subobject classifier. The category (FinSets)N provides an im
mediate such example, because in the linearly ordered set N°P, the num
ber of sieves on each object n is infinite. Another example is the category 
Ab of all (small) abelian groups. For, the terminal object 1 in Ab is 
the zero-group, so the group homomorphism true: 1 >-t 0 must send 0 
to 0 E 0, and thus its pullback along any ¢: A -> 0 is the subgroup 
S = Ker ¢ = ¢-l (0) of A. This implies that the proposed subobject clas
sifier must be an abelian group which contains a copy of every quotient 
group A/ S of every group A, an absurdity. 

5. Colirnits 

Each of our typical categories has all finite colimits. To show this it 
suffices (as in the dual case of finite limits discuss sed in §2) to observe 
that each has an initial object 0 and pushouts (or cocartesian squares, 
as they are sometimes called). In Sets, the empty set 0 is an initial 
object because there is for each set X exactly one function 0 -> X; in 
a functor category SetsCOP the constantly empty functor is initial. And 
for a topological group G, the empty set (with its unique action by G) 
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is clearly initial. So all the examples of §1 have initial objects [we leave 
to the next chapter the discussion of sheaves, listed as (x) in §1j. 

Next, we consider pushouts. In Sets or in FinSets the pushout of 
two functions I and 9 with a common domain X, as in the diagram 

X _....::9'-----+1 Z 

Ii 
I 
I 
I , 

v 

Y -------> Q = YllZ/{ I(x) = g(x)}, 

(1) 

is the set Q which is obtained from the disjoint union of Y and Z by 
identifying the elements I(x) and g(x), for all x E X. This quotient 
set has the usual universal property of a pushout. By this universal 
property, if in (1) X, Y, and Z are sets over some fixed set J (as in Ex
ample (ix) of §1), so is their pushout; therefore, this same construction 
yields pushouts in the comma category Sets/ J. And similarly, if I and 
9 in Diagram (1) are maps of G-sets for a group or monoid G [Exam
ples (iv) and (v) of §1]' or maps of continuous G-sets for a topological 
group G [Example (xi)], then the quotient Q can again be equipped with 
an action by G making Q into the pushout in the category of G-sets or 
continuous G-sets. Furthermore, if I and 9 in (1) are natural transfor
mations of functors X, Y, Z: cop -+ Sets, then the pointwise pushouts 
Q(C) for each object C of C form (again) by universality a functor 
Q: cop -+ Sets, which is the pushout in the functor category Sets cop • 

This is a special case of the fact that colimits in functor categories can 
be computed pointwise: If H: J -+ A C for categories J, A, and C, then 
its colimit lim H in the functor category A C is given by 

--+J 

(lim H)(C) = lim H(C) 
--+J --+J 

(C E C), (2) 

where H(C): J -+ A is the functor obtained from H by evaluating at 
the object C of C [ef. (25) of the preliminariesj. This applies also when 
J is finite, as in our Example (xiv). 

This shows that our typical categories have finite colimits. [In fact, 
except for (xiii) and (xiv), they all have arbitrary small colimits, and in 
this sense are cocomplete, but that need not concern us here.] Our typi
cal categories have many other common formal properties. For example, 
each morphism I has an epi-mono factorization 1= m·e. However, these 
other common properties will all be deduced (in Chapter IV) from the 
ones we have previously examined. In the deduction, limits will playa 
much more important role than colimits. 

To conclude this section, we wish to mention a useful fact concerning 
colimits in functor categories: 
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Proposition 1. In a functor category SetsCOP , any object P is the 
colimit of a diagram of representable objects, in a canonical way. 

This proposition asserts, in other words, that given a functor 
P: cop -+ Sets, there is a canonical way of constructing a small "index" 
category J and a diagram A: J -+ C in C of type J, such that P is iso-

morphic to the coli mit lim (y 0 A) of the diagram J ~ C ~ SetsCOP , 
--4J 

obtained by composition with the Yoneda embedding described in (1.5). 
Given P, the index category J which serves to prove the proposition 

is the so-called category of elements of P, denoted by Ic P or, more 
briefly, I P. Its objects are all pairs (C,p) where C is an object of C 
and p is an element p E P(C). Its morphisms (C',p') -+ (C,p) are those 
morphisms u: C' -+ C of C for which pu = p'; in other words, u must 
take the chosen element p in P(C) "back" into p' in P(C'): 

(C',p') -+ (C,p) by u: C' -+ C with pu = p'. (3) 

These morphisms are composed by composing the underlying arrows u 
of C. This category has an evident projection functor 

7rp: l P -+ C, (C,p) f-+ C. (4) 

Colimits over the category of elements can be used to construct a 
pair of adjoint functors which will have many uses, as follows. 

Theorem 2. If A: C -+ E is a functor from a small category C to 
a cocomplete category E, the functor R from E to presheaves given by 

R(E): C f-+ Homs(A(C) , E) (5) 

has a left adjoint L: SetsCOP -+ E defined for each presheaf Pin Sets Cop 

as the colimit 

L(P) = Colim( P --+ C -+ E). J Trp A 
(6) 

In other words, there is a pair of adjoint functors L -1 R, as in 

Cop 
L: Sets ( ) E : R, (7) 

where we place the left adjoint L on the left. 

Proof: A natural transformation T: P -+ R(E) is just a family 
{ TC } indexed by objects C of C for which each TC is a map 

TC: P(C) -+ Homs(A(C),E) 
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of sets which is natural in C, in the sense that the diagram of sets 

P(C) _T--,,-C---+) HomE(A(C),E) 

p(U)l lA (Ur (8) 

P(C') TC I ) Home(A(C'), E) 

commutes for each morphism u: 0' -+ 0 of C. But such a T may also 
be considered as a family of arrows of £ 

{Tc(p): A(C) -+ Ehc,p) (9) 

indexed by objects (C,p) of the category J P of elements of P. In this 
view, the condition (8) then means that the following diagram 

A(C) 

A(.' 1 

Anp(C,p) 

1'· ~~ 
/,(1) TC P 

A(C') = Anp(C',p') 

(10) 

commutes for each arrow u. This visibly means that the arrows TC (p) 
constitute a co cone from the functor Anp to the object E. By the defi
nition of a colimit, each such cocone comes by composing the colimiting 
co cone (to lim) with a unique arrow from the colimit LP to the object 

~ 

E. In other words, there is a bijection 

Nat(P, R(E» ~ HomE(LP, E). (11) 

Since this bijection is clearly natural in P and in E, it asserts that L is 
a left adjoint to R, just as claimed. 

Corollary 3 (= Proposition 1). Every presheaf is a colimit of 
representable presheaves. 

Proof: In the theorem, take £ to be the presheaf category and A 
to be the Yoneda embedding 

cop ......... 

A = y: C ----+ Sets = C = £. 

By the Yoneda lemma the definition (5) of the right adjoint R for any 
E = P is then 

RA(E)(C) = Homa(y(C),E) ~ E(C); 
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this states that RA is isomorphic to the identity functor of C. By the 
uniqueness up to isomorphism of adjoints, its left adjoint L must then 
also be isomorphic to the identity functor, so that the definition (6) of 
L gives for any presheaf P 

P ~ Colim( P ----> C ---t C). J trp Y ~ 
(12) 

One may prove the result directly, by constructing a colimiting cone 
from L(P) in (6), with A = y, to P. 

The Yoneda embedding of C in the presheaf category C is the "uni
versal" way of making C cocomplete, in the sense that every functor 
A from C to a cocomplete category t: factors through y by a unique 
colimit preserving functor from presheaves to t:, as follows. 

Corollary 4. For each functor A: C --t t: from a small category 
C to a cocomplete category t: there exists a colimit preserving functor 
L: SetsCOP --t t: for which the following diagram (with the Yoneda 
embedding y) commutes 

cop L Sets -----> t: 

yI/ (13) 

C. 

The functor L with these properties is unique up to isomorphism, and 
can be defined as in (6) by a colimit. 

Proof: It will suffice to prove that L of (6) makes the diagram (13) 
commute; then L, as a left adjoint, preserves colimits. Moreover, since 
every presheaf P is a colimit of representable presheaves, L is unique up 
to isomorphism, as asserted in the corollary. 

To prove that (13) commutes, note that when P = Hom( -, C) = 
yC is representable the corresponding category of elements J P has a 
terminal object-the element 1: C --t C of P(C). Therefore the colimit 
of the composite A 0 7rp will be just the value of A 0 7rp on the terminal 
object. Hence, 

Ly(G) ~ A7rp(G, Ie) = A(G) 

so the diagram does commute. 

The process C 1-7 C is a functor from Cat, the (large) category of 
all small categories, to Cocomp the ("super large") category of "all" 
cocomplete categories, with morphisms all colimit preserving functors. 
This corollary states in effect that the Yoneda embedding provides uni
versal arrows and so, like universal arrows generally, constitute the units 
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of an adjunction-an adjunction in which C f---+ C is left adjoint to the 
forgetful functor Cocomp ----+ Cat -forget cocompleteness. This sug
gestive formulation stumbles on the fact that co complete categories are 
hardly ever small [CWM, p. 110], so do not become small by forgetting 
the colimits! 

It is convenient to picture the category J P of elements of P in terms 
of its projection 7rp by a diagram 

kP p' -------> P E P(C) 

~pl 
, , 
I I (14) I I 
I I 
~ 

C I Sets, G' u IG. 
p 

(Here the object function of the functor P is a set indexed by the set 
Co of objects of C, and the objects of J P form the corresponding set 
"over" Co, in the sense described in §1: J-indexed sets'" sets over J.) 
In this diagram (14) the inverse image under 7r of an object C of Co is 
the set of all p E P( G), while the projection 7r has the property that 
for each such x E P( C) and each u: C' ----+ G there is a unique pair p', 
u': (G',p') ----+ (C,p) with 7rP' = G', 7r(u') = u. Any functor 7r: E ----+ C 
with this latter property is called a fibration of categories; in geometric 
terminology, given a point p over G each arrow in the base with target 
C lifts uniquely to an arrow "upstairs" with target p. 

A construction similar to (14) may be carried out when Sets is 
replaced by the category Cat of all small categories; it is often called 
the Grothendieck construction, but the case of J P above was first done 
by Yoneda and developed by Mac Lane well before Grothendieck. 

6. Exponentials 

The basic arithmetic operations on numbers and on sets are +, times, 
and exponent. We have already described + and times categorically as 
coproduct and product, respectively; we now consider the exponent Zx. 
In Sets, this ZX is the usual "function set", consisting of all functions 
h: X ----+ Z. It may be described by the familiar bijection 

Hom(Y x X, Z) ----+ Hom(Y, Zx) (1) 

which sends each function f: Y x X ----+ Z of two variables into the 
function f': Y ----+ ZX where, for each y E Y, f'y E ZX is the function 
with (f'y)(x) = fey, x) E Z. This bijection (1) completely determines 
ZX up to isomorphism; for setting Y = 1 yields ZX ~ Hom(l, ZX) ~ 
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Hom(X, Z). The bijection (1) is natural in Y, X, and Z and so states 
that the functor ( - )X is the right adjoint of - x X: Sets ---. Sets. 

Now consider any category C with finite products. Then for each 
object X of C the evident assignment Y f--+ Y X X determines a functor 
- x X: C ---. C, called "product with X". When this functor has 
a right adjoint, written Z f--+ ZX, we say that C has an exponential 
for X; this means that there is a bijection (1) natural in the objects 
Y and Z of C. When this holds for all objects X, it implies, by the 
"parameter theorem" for adjunctions [CWM, p. 100], that (X, Z) f--+ 

ZX is a functor cop x C ---. C called the exponential for the category 
C. 

The existence of the adjunction (1) can be stated in elementary terms 
(i.e., without using Hom-sets). For, set Y = ZX in (1); the identity 
arrow 1: ZX ---. ZX on the right in (1) then corresponds under the 
bijection to an arrow e = ez,x, 

e: ZX x X ---. Z (2) 

called evaluation; in Sets this arrow e is the actual evaluation e(h, x) = 
h( x) of the function h: X ---. Z at the argument x EX. The bijection 
f f--+ l' of (I), by naturality, now becomes the statement that to each 
f: Y x X ---. Z there is a unique 1': Y ---. ZX such that the diagram 

YxX 

flXl: 
I 

v ~ 
ZXxX~Z 

commutes. One also says that e is universal from - x X to Z. Also, e 
is the counit of the adjunction (1); the adjunction can also be described 
in terms of its unit TJ: Y ---. (Y x X)X, as explained in the preliminaries. 

The evaluation e = ez,x of (2) is natural in Z and "dinatural" in 
X. The latter notion applies because the domain of e is a bifunctor in 
X contravariant in the first X and covariant in the second; dinaturality 
means (see [CWM, p. 214]) that for every arrow t: X ---. X' the diagram 

zX' xX l' xl 
I ZX xX 

lxtl le 

Zx' xX' e IZ 

commutes. One also has natural isomorphisms ZxxY ~ (ZY)X and 
Zl ~ Z, with the evident values of the respective evaluations. 
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Recall that a category C is cartesian closed when it has a terminal 
object 1 and a binary product X x Y for any two objects X and Y, as well 
as exponentials yX (with their evaluations, for all objects X and Y). 
For example, the category Sets of all small sets and the category Cat 
of all small categories are both cartesian closed. Also, any product of 
cartesian closed categories is cartesian closed: both finite products and 
exponentials can be computed "termwise" in such a product category. 

In any cartesian closed category, there are natural isomorphisms 

1 X ~ 1, Xl ~ X, (3) 

(Y x Z)x ~ yX x ZX, X(YxZ) ~ (XY)z. (4) 

The last equation of (4) follows from the definition of the exponential 
and the associativity ofthe product; the first of (4) holds because ( _ )X 
has a left adjoint, hence preserves products. 

All our typical categories are cartesian closed. The case of sheaves 
will be discussed in the next chapter. The following proposition takes 
care of most of the other cases. 

Proposition 1. For any small category C, the functor category 
SetseOp is cartesian closed. 

To prove this proposition, recall that the product of two functors P 
and Q: cop -4 Sets is their pointwise product. However, we cannot use 
a "pointwise" exponential QP(C) = Hom(PC, QC) because the right
hand side here is not a functor of C in any reasonable way. 

To find a formula for the exponential, we first assume that an expo
nential QP exists, so that Hom(R x P, Q) ~ Hom(R, QP) for all R. In 
particular, for each representable functor R = Home ( - ,C) = yC, this 
isomorphism composed with the Yoneda isomorphism gives 

QP(C) ~ Homa(Y(C), QP) 

~ Homa(Y(C) x P, Q). 

Now drop the assumption that QP exists, but use this result to define 
QP as the functor 

(5) 

i.e., QP (C) is the set of all natural transformations () from 
Home ( -, C) x P to Q. This clearly defines a functor QP: cop -4 Sets. 

Associate with this definition (5) a putative evaluation map e: QP x 
P -4 Q with components 

ec((),y) = ()c(1C,Y) E Q(C) (6) 
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for C E C, (): Home( -, C) x P -+ Q and y E P(C). It follows that e 
is a natural transformation. Moreover, to every natural transformation 
¢: R x P -+ Q one can find a (unique) ¢/: R -+ QP such that the 
diagram of natural transformations 

RxP 
I 

¢' X 11 
I ~ 

QP x P ---e-+ Q 

(7) 

is commutative. Specifically, for C E C and u E RC, we must de
fine an element ¢'c (u) E QP ( C), that is, a natural transformation 
¢'c(u): Home( -, C) x P -+ Q. We define the components (¢'c(U))D 
for j: D -+ C and x E P(D) in terms of ¢ by 

(¢'c(U))D: Home(D, C) x P(D) -+ Q(D), 

(j, x) f---t ¢D(U' j, x). (8) 

The ¢' so defined is clearly natural in D. Moreover, by the definition 
(6) of the evaluation e, for u E R(C) and y E P(C), 

ec( ¢'c( u), y) = (¢'c( u) )c(1c, y) 
= ¢c(u,y), by (8). 

This means that the triangle (7) commutes, and that this condition 
plus naturality forces our definition of ¢'. Therefore QP is the required 
adjoint and Proposition 1 is proved. 

A somewhat different description of the same exponential appears 
as Exercise 8. The meaning of the formula (5) for the exponential QP is 
also illuminated by the special case in which the category C is a monoid 
or a group (Exercise 5). 

It follows from Proposition 1 that most of our typical categories are 
cartesian closed. [Examples (xiii) and (xiv) of §1 are similar to (i) and 
(viii).] Besides the case of sheaves, which will be discussed in the next 
chapter, this only leaves the case of continuous G-sets for a topological 
group G; a construction of exponentials in this category is outlined in 
Exercise 6. 

A global section 'Y of a functor P: cop -+ Sets is defined to be a 
function 'Y which assigns to each object C of C an element 'Ye E P( C) 
in such a way that the equation 

j:D-+C, (9) 

holds for every arrow j of C. Thus 'Y is just a natural transformation 
T 1 -+ P, where 1 is the constant functor 1 on coP. (The geometric 
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origins of the term "global" will appear in Chapter II below.) The set 
r(p) of all global sections "y of P yields a functor 

r: SetsCOP --+ Sets. 

In the opposite direction, the constant pre sheaf functor ~ assigns to 
each set S the functor ~S with (~S) (C) = S and every (~S) (f) the 
identity. For each Sand P there is a natural isomorphism 

Homa(~S, P) ~ Homsets(S, r P) (10) 

since a natural transformation ~S --+ P simply assigns to each element 
s E S its image, a global section 1 --+ P of P. Therefore, the functor ~ is 
left adjoint to the global sections functor r. This adjunction (where the 
left adjoint ~ is left exact) is a first instance of what will later be called 
a "geometric morphism" (Chapter VII). Also, a natural transformation 
~S --+ P is just a cone from the set S to the functor P to Sets. Hence 
(10) states also that r P is exactly lim P. 

+---
We can now summarize the common properties of our typical cate-

gories. They are categories E with the following properties 

(i) E has all finite limits and colimits, 
(ii) E has exponentials, 

(iii) E has a subobject classifier 1 --+ o. 

A category E with these properties will be called an elementary tapas; 
in brief a topos (plural: topoi). Each topos is, in particular, a cartesian 
closed category. 

7. Propositional Calculus 

The propositional calculus considers "Propositions" p, q, r, ... com
bined under the operations "and", "or", "implies", and "not", often 
written as p II q, P V q, P =? q, and 'p. Alternatively, if P, Q, R, ... are 
subsets of some fixed set U with elements u, each proposition p may be 
replaced by the proposition u E P for some subset Pc U; the proposi
tional connectives above then become operations on subsets; intersection 
II, union V, implication (P =? Q is ,PIIQ), and complement of subsets. 
These four operations satisfy various identities, so that the subsets of 
U under these operations constitute a Boolean algebra. In this way a 
Boolean algebra is the algebraic correlate of the classical propositional 
calculus. If, instead, one takes the intuitionistic propositional calculus, 
as formalized by Heyting, one obtains a different algebraic system on 
the same operations II, V, =?, '; such a system is known as a Heyting 
algebra. The typical model is not the set of all subsets of some set, but 
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the set of all open subsets of some topological space X; in the model, 
the operations /\ and V still correspond to intersection and union, re
spectively, but the other two operations must be reinterpreted (in order 
to give open sets). Thus U ~ V is the largest open set W such that 
W /\ U C V, while -,U is the interior of the complement of U (the largest 
open set disjoint from U). 

We now formulate the exact definitions, beginning with the notion 
of a lattice. A lattice L is a partially ordered set which, considered as a 
category, has all binary products and all binary coproducts. If we write 
x, y, and z for objects of L, then x :s; y if and only if there is a (unique) 
arrow x -+ y, the coproduct of x and y is the least upper bound (or 
sup) x V y and the product is the greatest lower bound (or inf) x /\ y. 
If a lattice L has elements 0 and 1 such that 0 :s; x :s; 1 for all x E L, 
then 0 and 1 are the (unique) initial and terminal objects, respectively, 
of L, considered as a category. Thus a lattice with 0 and 1 is a partially 
ordered set which, considered as a category, has all finite limits and all 
finite colimits. 

A lattice with 0 and 1 can also be defined equationally, as a set with 
two distinguished elements 0 and 1 and two binary operations V and /\, 
both of which are both associative and commutative and which satisfy 
the added identities 

x /\ x = x, x V x = x, 

1/\ x = x, 0 V x = x, (1) 

x /\ (y V x) = x = (x /\ y) V x. 

These equations on the operations 

/\: L x L -+ L, V: L x L -+ L, 0, 1: 1 -+ L 

can be used to define a "lattice object" L in any category C with finite 
products. Here they follow from the above definitions of /\ and V in 
terms of the partial order. And, given these equations, the partial order 
can be recovered because x :s; y holds in L if and only if x = x /\ y (or, 
equivalently, y = x V y). 

A distributive lattice L is a lattice in which the identity 

x /\ (y V z) = (x /\ y) V (x /\ z) (2) 

holds for all x, y, and z. This identity implies the dual distributive law 

x V (y A z) = (x V y) A (x V z). (3) 

For, the right-hand side of (3) expands by (2) and then (1) to give, by 
associativity, 

(x V y) /\ (x V z) = [(x V y) /\ x] V [(x V y) /\ z] 

= x V [(x /\ z) V (y /\ z)] 

= [x V (x /\ z)] V (y /\ z) = x V (y /\ z). 
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A complement for an element x in a lattice L with 0 and 1 is an element 
a E L such that 

x 1\ a = 0, xVa=1. (4) 

In a distributive lattice a complement a, if it exists, is unique. For let b 
be another complement to x. Then 

b = b 1\ 1 = b 1\ (x V a) = (b 1\ x) V (b 1\ a) 

= (x 1\ a) V (b 1\ a) 

= (x V b) 1\ a = a. 

We denote the unique complement a of x, when it exists, by a = --'x. 

A Boolean algebra B is a distributive lattice with 0 and 1 in which 
every element x has a complement --'x; thus, 

x 1\ --,x = 0, x V --,x = 1. (5) 

One may readily verify the additional properties 

--, (x V y) = --,x 1\ --'y, --, (x 1\ y) = (--,x) V (--,y) , ( 6) 

--,--,x = x. (7) 

The identities (6) are called the DeMorgan laws. 
The partially ordered set of all the subsets of a given set is always a 

Boolean algebra. A basic theorem due to M. H. Stone asserts that every 
Boolean algebra is isomorphic to an algebra of some of the subsets of 
some set U. We will use this theorem in Chapter IX. 

8. Heyting Algebras 

A Heyting algebra H (also called a Brouwerian lattice) is a poset 
with all finite products and coproducts which is cartesian closed (as a 
category with products). In other words, a Heyting algebra is a lattice 
with 0 and 1 which has to each pair of elements x, y an exponential 
yX. This exponential is usually written as x :::::? y; by its definition it is 
characterized by the adjunction 

z::::: (x:::::? y) if and only if z 1\ x::::: y. (1) 

In other words, x :::::? y is a least upper bound for all those elements z 
with z 1\ x ::::: y; in particular, then, y ::::: (x :::::? y). Thus, in the usual 
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picture of a partially ordered set, x=? y lies above y, 

x=?y 

• 

• 
xAy 

but only so far above that its intersection with x is still x A y. For 
example, for any topological space X the set Open(X) of all open sets 
in X is a Heyting algebra: It is a lattice (under inclusion) because binary 
unions and intersections of open sets are open, as are the sets 0 and X. 
For two open sets U and V the exponential U =? V can be defined, as 
suggested by (1), as the union U Wi of all those open sets Wi for which 
Wi n U c V. Then, because intersection is distributive over arbitrary 
unions, 

(U Wi) n U = U(Wi n U) c V. 

Therefore, U Wi = (U =? V). 
A similar argument will show that any complete and (infinitely) dis

tributive lattice is a Heyting algebra. Here a lattice is said to be complete 
when, regarded as a category, it has all small limits and small colimits, 
i.e., all small products and coproducts. 

In a Boolean algebra, for all x, y, and z, 

z$.(-,xVy) ifandonlyif zAx$.y. 

Proof, only if: z A x$.( -,x V y) A x $. y A x $. y; if: z = z A 1 = 
z A (-,x V x) = (z A -,x) V (z A x) $. -,x V y. 

Hence a Boolean algebra has exponentials given by 

(x =? y) = -,x V y. 

This is the classical definition of material implication =? (for proposi
tions, p =? q is "not p or q"). Therefore, every Boolean algebra is a 
Heyting algebra. The converse does not hold; for example, the open sets 
in the real line form a Heyting algebra which is not Boolean (because 
the complement of an open set need not be open). 

Now we examine the identities valid in any Heyting algebra. For any 
cartesian closed category with objects X, Y, the unit and the counit of 
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the basic adjunction defining the exponential are natural transforma
tions 

x -+ (X x y)Y, y x X Y -+ X. 

For a Heyting algebra these become the inclusions 

x :::; (y =* (x 1\ y)), yl\(y=*x):::;x. (2) 

The properties 1 x ~ 1 and Xl ~ X of the exponential become 

(x =* 1) = 1, (3) 

Since the functor x =* ( - ) is a right adjoint, it preserves products, so 

(x =* (y 1\ z)) = ((x =* y) 1\ (x =* z)), (4) 

while the associative law for the product of objects implies X YxZ ~ 
(XY)Z which becomes 

((y 1\ z) =* x) = (z =* (y =* x)). (5) 

Also - 1\ Y is a left adjoint, so must preserve coproducts, as in 

((x V z) 1\ y) = ((x 1\ y) V (z 1\ y)). (6) 

This means that the underlying lattice of any Heyting algebra is dis
tributive. 

Intersection in any lattice is commutative. For a Heyting algebra H 
this means that, for all x, y, and z, 

z:::; (x =* y) iff z 1\ x:::; y iff x 1\ z :::; y iff x:::; (z =* y). 

Now - =* y (like any exponential) is a contravariant functor in the 
argument -. Hence, in this display we may regard - =* y on the right 
as a functor from H to HOP and on the left as a functor from HOP to H; 
the equivalence then asserts that the first - =* y is left adjoint to the 
second - =* y. Since any left adjoint preserves coproducts, this means 
that - =* y carries coproducts to products (coproducts in HOP), as in 
the identity 

((x V z) =* y) = ((x =* y) 1\ (z =* y)). (7) 

If one interprets x, y, and z as propositions, with 1\ as "and" and V as 
"or", all the equations (2) through (7) become familiar properties of the 
implication relation =* for propositions. 

In any Heyting algebra we define the negation of x as 

oX = (x =* 0). (8) 
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Thus "not x" means "x implies falsity" or "x implies absurdity". In 
view of the definition of =}, this can be rewritten as 

y :::; -,x iff y 1\ x = O. (9) 

In other words, in a complete lattice -,x is the union of all those y which 
meet x in O. For example, in the case of the Heyting algebra Open(X) of 
all open subsets of a topological space X, the negation -,U is the union 
of all open subsets of X which do not meet U, so is the interior of the 
set-theoretic complement of U; that is, the set-theoretic complement of 
the closure of U. Thus -,-,U is the interior of the closure of U, which 
may be larger than U, as for example when U is a suitable open subset 
of the line or the plane. This example shows that -,-,x need not equal x. 
Moreover, -,x is not necessarily a complement of x; though x 1\ -,x = 0, 
it may not be the case that x V -,x = l. 

Some of the familiar properties of negation still apply, as follows. 

Proposition 1. In any Heyting algebra H, 

x :::; -,-,x, x:::; y implies -,y :::; -,x, 

-,-,(x 1\ y) = -,-,x 1\ -'-'y. 

(10) 

(11) 

(11') 

Proof: Since x 1\ -,x = -,x 1\ x = 0, the first follows by (9). The 
second of (10) states that -,: H -+ HOP is a functor. Explicitly, if x :::; y, 
then x 1\ -'y :::; Y 1\ -'y = 0, so -'y :::; -,x, again by (9). This result and x :::; 
-,-,x gives -,-,-,x :::; -,x, while x :::; -,-,x holds for all x, hence for -,x, and 
so gives -,x :::; -,-,-,x. Hence, (11) holds. Furthermore, two applications 
of (10) to the inequality x 1\ y :::; x yield -,-, (x 1\ y) :::; -,-,x. Similarly, one 
derives -,-,(xl\y) :::; -'-'y; therefore, -,-,(xl\y) :::; -,-,xl\-,-,y. To show the 
converse inequality -,-,x 1\ -'-'y :::; -,-,(x 1\ y) we use the commutativity 
and associativity of the meet 1\, together with (9) and (11), as follows: 

-,-,x 1\ -'-'y :::; -,-,(x 1\ y) iff -,-,x 1\ -'-'y 1\ -,(x 1\ y) = 0 by (9), 

iff -'-'y 1\ -,(x 1\ y) :::; -,-,-,x by (9), 

iff -'-'y 1\ -,(x 1\ y) :::; -,x by (11), 

iff -'-'y 1\ -,(x 1\ y) 1\ x = 0 by (9), 

iff -,(x 1\ y) 1\ x:::; -'-'-'y = -'y by (9) and (11), 

iff -,(x 1\ y) 1\ x 1\ Y = 0 by (9). 

But in any Heyting algebra, the identity -,z 1\ z = 0 holds, as an imme
diate consequence of the definitions (1) and (8). 
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Proposition 2. In a Heyting algebra, if an element x has a com
plement, that complement must be -,x. 

For this reason, -,x is sometimes called the pseudo-complement of x. 

Proof: Suppose that x has a complement a, with x /\ a = 0 and 
x V a = 1. By the first of these equations, a ::; -,x. By the second and 
the distributive law, 

-,x = -,x /\ (x V a) = -,x /\ a; 

hence -,x ::; a. Combining these results, a = -,x, as asserted. 

Boolean algebras can be defined equationally, specifically by the as
sociative and commutative laws and the equations (7.1), (7.2), and (7.5) 
on the operations /\, V, -, and the elements 0 and 1. A corresponding 
result holds, in a more subtle way, for Heyting algebras; this will be used 
later to define Heyting algebra objects. 

Proposition 3. In a Heyting algebra H the implication, =}, satisfies 
the following identities, for all elements x, y, z E H: 

(x=}x)=l, 

x /\ (x =} y) = x /\ y, Y /\ (x =} y) = y, 

x=} (y /\ z) = (x =} y) /\ (x =} z). 

(12) 

(13) 

(14) 

Conversely, in any lattice L with 0 and 1 a binary operation =} satisfying 
these identities must be the implication of a Heyting algebra structure 
on the lattice L. 

Proof: Since y /\ x ::; x for all y, the definition of x =} x shows that 
(12) must hold. By the definition of =} again, x /\ y ::; (x =} y), while, 
by evaluation, x /\ (x =} y) ::; y; hence, the first of (13) holds. By the 
definition of =} once more, y ::; (x =} y), which gives the second of (13), 
while (14) is just (4), the fact that x=}- preserves products. 

The equations (12), (13), and (14) represent familiar properties of 
implication. Also (14) with z = x, when combined with (x =} x) = 1 
from (12), gives 

(x =} (y /\ x)) = x =} y. (15) 

Since (14) states that the operation (x =} -) preserves products, it also 
shows that (x =} -) preserves inequalities, so that 

a::; b implies (x =} a) ::; (x =} b). (16) 

For the converse of the proposition, we must show for any lattice that a 
binary operation =} satisfying equations (12), (13), and (14) necessarily 
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satisfies the definition of an exponential; in other words, that (12), (13), 
and (14) imply 

z:::;(x~y) ifandonlyif zl\x:::;y (17) 

for all x, y, and z. Given the left-hand inequality, the first part of (13) 
yields 

z 1\ x:::; (x ~ y) 1\ x = x 1\ Y :::; y, 

which is the right-hand inequality of (17). Conversely, given that in
equality, one has 

z = z 1\ (x ~ z) :s: x ~ z, 
z:S: [x ~ (z 1\ x)], 

[x ~ (z 1\ x)] :s: (x ~ y), 
z :s: (x ~ y), 

This completes the proof of (17). 

by (13), 

by (15), 

by assumption and (16), 

by transitivity. 

Proposition 4. A Heyting algebra is Boolean if and only if ....,....,x = x 
for all x E H, or, if and only if x V....,x = 1 for all x. 

Proof: Since the complement is unique in a Boolean algebra, x is 
the complement of ....,x, so the equation ....,....,x = x holds there. Conversely, 
in any Heyting algebra, by (8) and (7), 

....,(x Vy) = (x Vy) ~ 0 = (x ~ 0) 1\ (y ~ 0) = (....,x) 1\ (....,y). 

This is one of the DeMorgan laws (7.6). Now if also ....,....,x = x for all x, 
one has by this law 

x V....,x = ....,....,(x V ....,x) = ....,(....,x 1\ ....,....,x) 

= ....,0 

=1. 

Since always x I\....,x = 0, this shows that ""'x is a complement of x, and 
hence that H is indeed Boolean. 

The analogous characterization of Boolean algebras by x V....,x = 1 is 
immediate. The assertion x V ....,x = 1 is the famous "tertium non datur" 
of classical logic, doubted by intuitionists and constructivists. 

As already observed, negation is a functor ....,: H --+ HOP and also 
HOP --+ H. Since x S ""'y iff Y S "",x , this functor is adjoint to itself. 
Thus, a Heyting algebra is Boolean iff this adjunction is an equivalence 
(actually, an isomorphism). 

The relation between Heyting algebras and our typical categories 
discussed in §1-6 lies in the fact that the poset of subobjects of a given 
object in any such typical category is always a Heyting algebra (and 
sometimes a Boolean algebra). Most cases are taken care of by the 
following proposition. 
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-- cop 
Proposition 5. Consider the functor category C = Sets of a 

given small category C. For any object P of is, the partially ordered 
set Suba(P) of subobjects of P is a Heyting algebra. 

Proof: Under pointwise operations, the set Sub(P) of all subfunc
tors of P is a complete lattice, satisfying the infinite distributive law. 
Hence (as for open sets above), it is a Heyting algebra. We list the 
explicit description of the operations 1\, V, 0, 1, =}, and -', and leave 
further verification to the reader. If 8 and T are two given subfunctors 
of P, then their least upper bound 8vT and their greatest lower bound 
8 1\ T may be defined pointwise, as the functors 

(8 V T)(C) = 8(C) U T(C), 

(81\ T)(C) = S(C) n T(C), 

since S(C) and T(C) are both subsets of P(C). The implication S =} T 
is defined for C in C by 

(S =} T)(C) = {x E P(C) I for all f: D -+ C 

in C: if x . f E S(D) then x . f E T(D)} (18) 

(The pointwise definition doesn't work, because it doesn't give a sub
functor.) The largest and smallest subfunctors of P are respectively the 
functor P itself, and the empty functor ° [with o( C) = 0 for all Cj. 
Consequently, negation can be described explicitly for a subfunctor S as 

(-,S)(C) = {x E P(C) I for all f: D -+ C in C, 

X· f ~ S(D)}. 
(19) 

From the description of negation, it is clear that the identity -,SV S = 

P need not hold in general (e.g., take C = 2). 
In the particular case of BG = G - Sets for a group G [Example (iv) 

of §1]' a subobject of a given G-set X is just a subset S of X which is 
closed under the action by G (i.e., xES implies X· 9 E S for all 9 E G 
and x E X). If Sand T are two such subsets closed under the action, 
then so are S U T, S n T, and X - S = -,S. So, in this case, the Heyting 
algebra structure of Sub(X) is just the restriction of the usual structure 
on the power set of X. In particular, SubBc(X) is a Boolean algebra. 
The same reasoning applies to the category BG of continuous G-sets for 
a topological group G. 

A poset P is complete iff every subset of P has an 1. u. b. (a "sup" or 
a join) and a g.1.b. (an "inf" or a meet); actually it suffices to require 
the existence of all 1.u.b.s. Thus P is complete as a poset iff P as a 
category has all limits and all colimits. A complete poset is necessarily 
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a lattice with 0 and 1. We will often have to do with complete Heyting 
algebras (cHa's) and complete Boolean algebras (cBa's); they are, of 
course, Heyting or Boolean algebras which are complete as posets. The 
algebra Open(X) of all open subsets U of a topological space is a cHa 
with the usual sups. However, the inf of a family {Ui liE I} of open 
sets is just the largest open set contained in all the Ui and so is not 
usually the set-theoretic intersection of the sets Ui . 

9. Quantifiers as Adjoints 
Our discussion of the propositional calculus has indicated that the 

basic operations 1\, V, and =} of this calculus can all be described as 
adjoints. We turri now to the more subtle question of interpreting the 
quantifiers of the usual predicate calculus as adjoints, too. 

Consider quantifiers (Vx) and (:3x )~that is, "for all x" and "there ex
ists an x"~as applied to a predicate S(x, y), where x and yare elements 
of sets X and Y, respectively. If we regard S as the subset SeX x Y 
of those pairs (x,y) for which S(x,y) is true, then (Vx)S(x,y) similarly 
denotes a related subset T c Y consisting of all those y with every pair 
(x, y) E S. Writing p: X x Y ---* Y for the usual projection, we will 
denote this subset T, corresponding to (Vx)S(x, y), as VpS; similarly 
:lpS denotes the subset corresponding to (:lx)S(x, y). Now let PY be 
the Boolean algebra of all subsets T c Y and P(X x Y) the Boolean 
algebra of all S. Then PY and P(X x Y) can be viewed as categories, 
while the functions Vp and :3p , since they preserve the inclusion relation 
S C Sf between subsets, are functors 

(1) 

Theorem 1. For the projection p : X x Y --t Y, the functors :lp and 
Vp are respectively left and right ad joints to the functor p*: P(Y) --t 

P(X X Y) which sends each subset T c Y to its inverse image p*T 
under p. 

As usual, the inverse image is p*T = { (x, y) lyE T}; it may also 
be described as the pullback of T>---+ Y along p. 

Proof: For subsets SeX x Y and T c Y one evidently has 

p*T c S if and only if T c "IpS, 

S c p*T if and only if :lpS c T. 

Since p*T c S means exactly that the set Hom(p*T, S) in the category 
P(X x Y) is nonempty (with one element) and so on, these equivalences 
give precisely the asserted adjunctions. 

Much the same argument applies when the projection p is replaced 
by an arbitrary function f. 
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Theorem 2. For any function f: Z -+ Y between sets Z and Y the 
inverse image functor f* : PY -+ P Z between subsets has left and right 
ad joints, 3 f and V f· 

Proof: The left adjoint 3f assigns to each S c Z its image 3f S c Y, 
which may be described with a "there exists" as 

3 f S = {y I there exists a z with f z = y and z E S}. 

The right adjoint V f assigns to each S the set 

V f S = { y I for all z, if f z = y, then z E S}, 

described with a "for all". The proof that these are adjoints, as stated, 
is immediate. The notations 3 f and V f are chosen to match the special 
case of a projection f = p, when these adjoints correspond to ordinary 
quantifiers. 

The result (left adjoint on the left) is the diagram 

(2) 

Y, PY. 

This construction has provided adjoints for the operation f* of pulling 
back a subobject of a set Y. 

More generally, such adjoints exist not just for subsets S of a set Z 
but for arbitrary sets B over a given set Z. Indeed, for each function 
f: Z -+ Y, as in Theorem 2, consider the pullback functor 

f*: SetsjY -+ SetsjZ (3) 

defined for any set A over Y by 

u n2 

f*(A - Y) = A Xy Z ------+ Z. (4) 

If we identify a set A over Y with a Y-indexed family {Ay lyE Y} of 
sets, as in (1.8), the pullback functor (2) corresponds to "reindexing" via 
f: it sends a Y-indexed family {Ay lyE Y} to the Z-indexed family 
{Af(z) I z E Z}. 

Theorem 3. For any function f: Z -+ Y between sets, the pullback 
functor f*: SetsjY -+ SetsjZ has both a left and a right adjoint. 
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Proof: By the equivalences Sets/Y ~ SetsY and Sets/Z = SetsZ , 

we may as well prove that the reindexing functor 

f*: SetsY ---+ SetsZ , f*({Ay lyE Y}) = {Af(z) I Z E Z} 

has both adjoints. The left adjoint is 

defined for a Z-indexed family B = {Bz I z E Z} by 

(L:.f(B))y = L B z, (5) 
f(z)=y 

where L:. denotes the coproduct (disjoint union) of the sets B z . The right 
adjoint 

IIf: SetsZ ---+ SetsY 

is defined by a cartesian product II as 

(IIf(B))y = II Bz· 
f(z)=y 

(6) 

In words, given an indexed set B = {Bz I z E Z}, the indexed set 
L:.f(B) has at index y the coproduct of all the sets Bz for which J(z) = y. 
This set Bz is the "fiber" over z. Dually, IIfB is the product over the 
fibers. As for the proof that L:. f is left adjoint to f*, just observe that 
an indexed family of maps hy: (L:. f B)y ---+ Ay (y E Y) is the same thing 
as an indexed family of maps B z ---+ Af(z) (z E Z). The proof that IIf 
is right adjoint to the pullback f* is similar. 

More generally, suppose C is an arbitrary category with pullbacks. 
Then for each morphism of objects J: B' ---+ B in C, pulling back along 
J induces a functor between the corresponding slice categories 

f*: C / B ---+ C / B' (7) 

(the functor, of course, depends on the particular choice of the pull
backs). C/ B is also called the category of objects over the "base" object 
B, and a functor of the form (7) is also called a change of base functor. 
Theorem 3 is a special case of the following result: 

Theorem 4. Let C be a category with pullbacks, and let B be an 
object ofC. For each f: B' ---+ B, the change of base functor f* : C / B ---+ 

C / B' has a left adjoint; moreover, if C / B is cartesian closed, each such 
f* also has a right adjoint. 
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The left adjoint is given by composition with f. 
With r., the left adjoint and II, the right, the result is 

(8) 

B, CIB. 

We prove the theorem first in the case when B = 1 is the terminal object 
of C, so that C/l is just (isomorphic to) C, while pullback along the 
unique arrow B' -+ 1 is just the functor 

- x B': C -+ C I B', 

sending each object X to the object X x B' -+ B' over B' (by projection). 
Take any object h: Y -+ B' in CIB'. An arrow from this object Y -+ B' 
to X x B' -+ B' in C I B' is then just an arrow from Y to X in C; hence, 
a left adjoint to - x B' is the forgetful functor r.: C I B' -+ C given by 
r.(Y -+ B') = Y. 

On the other hand, an arrow from X x B' -+ B' to h: Y -+ B' in 
C I B' is just an arrow t: X x B' -+ Y in C such that ht is the projection 
X x B' -+ B'. By exponential adjunction, these arrows t correspond 
to those arrows t': X -+ y B ' for which h B ' 0 t' is the composite X -+ 

1 ~ B,B', where j arises by exponential adjunction from the identity 
B' -+ B'. These arrows t' in turn correspond by pullback exactly to the 
arrows til: X -+ fh, where fh is the pullback in the square 

1 I B,B'. 
j 

Therefore, fh, the pullback of hB ' along j, is the desired right adjoint 
to - x B'. 

Note that, if C = Sets, this pullback fh is just the set of those 
functions on B' to Y whose composite with h: Y -+ B' is the identity 
of B'; that is, the set of cross sections of the map h. Hence, in general, 
we might call fh the object of "cross sections" of the arrow h. 

Now return to the general case of any f: B' -+ B. This arrow f is 
also an object (1) in the slice category CIB; moreover, an object over 
(1) is just a commutative square 

X IB 

1 II 
B' ---:--->1 B , 
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and this square is determined by X ----+ B'; that is, by an object in C / B'. 
This correspondence is an isomorphism of slice categories 

(C/B)/(J) ~ C/B', 

and pullback along 1*: C / B ----+ C / B' = (C / B) / (J) is reduced to the 
previous case of an object [that is, the object (J)] in the cartesian closed 
category C / B. This proves Theorem 4. 

From this theorem we can conclude that pullbacks preserve colimits, 
in the following sense. 

Proposition 5. If Band B' are objects in a complete category 
C with pullbacks such that all the categories C, C / B, and C / B' are 
cartesian closed, then pullback along any arrow f: B' ----+ B preserves all 
colimits which exist in C / B. 

Proof: Since pullback is a functor with a right adjoint, by Theo
rem 4, it must, like all left adjoints, preserve colimits. 

When colimits are preserved, as in this case, by pullbacks, we say 
that they are stable under pullback. 

Notice, incidently, for a category C with products, that a cocone 
in the category C / B is a colimit there iff the corresponding co cone in 
C (obtained by forgetting the arrows to B) is a colimit in C. Indeed, 
the forgetful functor U: C / B ----+ C has a right adjoint B*: C ----+ C / B 
(product with B), hence preserves colimits. Conversely, the fact that if 
the co cone yields a colimit in C then it was already a colimit in C / B, 
follows immediately from the universal property of the colimit. 

As a consequence, note also that a map 

G IG' 

~/ 
B 

in C / B is an epi there iff G ----+ G' is an epi in C. Indeed, the square 

0----+1 Of 

1 11 (9) 

G' I G' 

consists of maps over B, and is a pushout in C / B iff it is a pushout in 
C. But (9) is a pushout in either category iff G ----+ G' is an epi there. 
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Exercises 

1. Show that pullbacks of epis are epi for categories of each of the 
types (i)-(ix). 

2. Prove that FinSetsN has no subobject classifier. 
3. For R a ring, prove that the category R - Mod of left R-modules 

has no subobject classifier. 
4. If A --t B is an equivalence of categories, prove that a subobject 

classifier for A yields one for B, and that A cartesian closed 
implies B cartesian closed. 

MOP 
5. (a) In BM = Sets for M a monoid observe that an object 

X is a right action X x M --t X of M on a set X and 
that, Y being another object, Hom(X, Y) is the set of 
equivariant maps e: X --t Y [maps with e(xm) = (ex)m 
for all x EX, m EM]. Prove that the exponent Y x is the 
set Hom(M x X, Y) of equivariant maps e: M x X --t Y, 
where M is the set M with right action by M, with the 
action e f--+ ek of k E M on e defined by (ek) (g, x) = 
e(kg,x). 

(b) For objects X, Y in SetseOP , for G a group, show that the 
exponent Y x can be described as the set of all functions 
f: X --t Y, with the right action of 9 E G on such a 
function defined by (fg)x = [f(xg-1)]g for x E X. 

6. Let G be a topological group and BG the category of continuous 
G-sets. Let GO be the same group G with the discrete topology. 
So BGo = Sets(e6 )OP is a category as considered in the previous 
exercise. Let ic: BG --t BGo be the inclusion functor. 

(a) Prove that a G-set (X,JL: X x G --t X) is in the image of 
ie, i.e., that JL is continuous, iff for each x E X its isotropy 
subgroup 

Ix = {g E G I x . 9 = x} 

is an open subgroup of G. 
(b) Prove that, for a GO-set (X,JL) as above, the set re(X) = 

{x E X I Ix is open} is closed under the action by G, 
and that re defines a functor BGo --t BG which is right 
adjoint to the inclusion functor ie. 

(c) Observe that ie preserves products, and conclude from (b) 
that BG is cartesian closed since BGo is. [Hint: define the 
exponential yX in BG by re(ie(y)iG(X)).] 
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7. In Exercise 6, show that the forgetful functor U: BG -+ Sets 
need not preserve infinite limits. 

8. Consider a small category C. For each object B of C there 
is a functor DB: C / B -+ C defined by taking the domain of 
each arrow to B. Hence, each T: cop -+ Sets yields TB = 
T 0 DOP: (C / B)OP -+ Sets. Define an exponential TS by 

with the evident evaluations eB: TS(B) x S(B) -+ T(B). Show 
that TS with this evaluation e is indeed the exponential in the 

.-... cop 

functor category C = Sets . 
9. Let Q be the (linearly) ordered set of all rational numbers con

sidered as a category, while R + is the set of reals with a symbol 
00 adjoined. In SetsQ , prove that the subobject classifier 0 has 
O(q) = {r IrE R+, r :::::: q}. 

10. Generalize Theorem 2 of Section 9 to presheaf categories. More 
precisely, prove that for a morphism (i.e., a natural transforma
tion) i: Z -+ Y in a = SetsCOP , the pullback functor 

has both a left adjoint :3f and a right adjoint Vf' [Hint: the left 
adjoint can be constructed by taking the pointwise image. De
fine the right adjoint V f on a subfunctor S of Z by V f (S) (C) = 
{y E Y(C) I for all u: D ---t C in C and Z E ZeD), Z E SeD) 
whenever iD(Z) = yu}.] 

11. Prove Proposition 5.1, that every functor P to sets is repre
sentable, by constructing for each P: cop -+ Sets a co equalizer 

u y(C') ~ U y(C) ~ P, 
u CEC 

C'--+C PEP(C) 
pEP(C) 

where U denotes the coproduct and for each object B the maps 
are defined for each v: B -+ C or C' as follows 

EB(C,P; v) = P(v)p, (}B(U,P; v) = (C,p; uv) TB(U,P; v) = (C',pu; v). 

(Hint: For each B, this gives a split co equalizer , as defined in 
[CWM, p. 146].) 



II 
Sheaves of Sets 

This chapter starts with the notion of a sheaf F on a topological 
space X. Such a sheaf is a way of describing a class of functions on X
especially classes of "good" functions, such as the functions on (parts 
of) X which are continuous or which are differentiable. The description 
tells the way in which a function f defined on an open subset U of X 
can be restricted to functions flv on open subsets V c U and then 
can be recovered by piecing together (collating) the restrictions to the 
open subsets Vi of a covering of U. This restriction-collation description 
applies not just to functions, but also to other mathematical structures 
defined "locally" on a space X. 

Alternatively, a sheaf F on X can be described as a rule which 
assigns to each point x of the space a set Fx consisting of the "germs" 
at x of the functions to be considered, as defined in neighborhoods of 
the point x. The sets Fx for all x can then be "pasted" together by a 
suitable topology so as to form a space (or bundle) projected onto X; 
an individual "good" function (for this sheaf) is then a "cross section" 
of the projection of this bundle. Viewed in this way, the sheaf F is a set 
Fx which "varies" (with the point x) over the space X. 

The letter F is often used for a sheaf because in French the word for 
"sheaf" is "faisceau". 

We will show that the category Sh(X) of all sheaves of sets on a 
given space X has all the properties listed in Chapter I for our "typical" 
categories (i.e., for topoi). Much of the subsequent development of the 
properties of topoi from the axioms is motivated by geometrical con
siderations from this case of sheaf theory. This chapter is intended to 
develop some of the sheaf-theoretic intuition behind this development. 

Readers familiar with sheaf theory might wish to skip this chapter; 
they should then note that we emphasize sheaves of sets, and not just 
those of abelian groups or of modules, and that a sheaf is defined here to 
be a suitable contravariant functor on open sets, and not the associated 
(etale) space of the sheaf, as described in §5 below. 

64 
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1. Sheaves 

A topology on a set X serves to define the continuous functions there; 
for example, the continuous functions from the space X to the reals R, 
or from any open set U in X to R. The continuity of each f: U --> R 
can be determined "locally". This means two things: 

(i) If f: U --> R is continuous and V c U is open, then the function 
f restricted to V is continuous, flv: V --> R. 

(ii) If U is covered by open sets Ui, and the functions fi: Ui --> R 
are continuous for all i E I, then there is at most one continuous 
f: U --> R with restrictions flu; = fi for all i; moreover, such 
an f exists if and only if the various given fi "match" on all the 
overlaps Ui n Uj , in the sense that fix = fJ x for all x E Ui n Uj 

and all i, j in I. 

Property (ii) states that continuous functions are uniquely "collat
able". 

Many other structures on a space X are "determined locally" in 
much the same sense. These properties (i) and (ii) can be conveniently 
expressed in terms of the function C which assigns to each open U c X 
the set of all real-valued continuous functions on U, 

C(U) = CU = {f If: U --> R continuous}. (1) 

For V C U, the operation of (i) restricting each f to the subset V, 
written as f 1--+ flv, is a function CU --> CV, while if We V c U are 
three nested open sets, restriction is transitive, in that Ulv)lw = flw. 
These two statements mean that the assignments 

U 1--+ CU, {V C U} 1--+ {CU --> CV by f 1--+ fld 

define a functor c: O(X)OP --> Sets. Here O(X) is the category with 
objects all open subsets U of X and arrows V --> U the inclusions V c U. 
The statement that C is such a functor expresses property (i) above. 

As for property (ii) for an open covering U = U Ui , an I-indexed 
family of functions fi: Ui --> R, i E I, is an element of the prod
uct set I1 CUi, while the assignments {Ii} 1--+ {filu;nuj } and {Ii} 1--+ 

{!jluinuj } define two maps p and q of I-indexed sets to (I x I)-indexed 
sets, as in the diagram 

CU --'"--> II CUi ~ II C(Ui n Uj ). (2) 
i,j 

Then property (ii) above states that the map e given by f 1--+ {flu'} 
is the equalizer of the maps p and q (i.e., is the universal map e with 
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pe = qe). A sheaf will be defined below to be a functor C such that (2) 
is an equalizer for all coverings U = U Ui · 

We have described this particular C as a sheaf of sets; it is actually 
a sheaf of algebras over the field R or a sheaf of R-modules, because 
each set CU is an algebra over R under pointwise sum, product, and 
scalar multiple, while the maps p, q and e of (2) are R-linear morphisms 
of rings. Hence, in this case, the statement that (2) is an equalizer is 
equivalent to the statement that the sequence of R-modules 

o ~ CU -"-----+ II CUi ~ II C(Ui n Uj ) (3) 
i i,j 

is left exact (Le., that e is the kernel of p - q). 
There are many other examples of sheaves on a space X; for example, 

the functor D with each D(U) the set of all functions, continuous or not, 
on U to R, or I(U), the set of all continuous functions on U to the unit 
interval I in R. However, the set B(U) of all bounded functions on U to 
R is a functor of U but not a sheaf, because the collation of functions 
which are bounded may yield an unbounded function. 

For the Euclidean n-space X = R n there are a number of examples 
of sheaves. For U open in R n let C k U be the set of all f: U ----+ R which 
have continuous partial derivatives of all orders up to order k inclusive. 
Then C k is a functor C k : O(X)OP ----+ Sets with values in Sets or in 
R-Mod, and (2) 

with C replaced by C k is again an equalizer because differentiability 
is local. Thus, each C k is a sheaf on R n. This leads to a nested sequence 
of subsheaves on R n : 

C= c ... C C k C C k - 1 C ... C C 1 C CO = C. 

We will regard a sheaf as a functor, that is, as a special kind of a 
presheaf Here a presheaf of sets P on a topological space X is defined 
to be a functor P: O(X)OP ----+ Sets; that is, a presheaf on X is the same 
thing as a presheaf on the category O(X), as defined in §I.l. This means 
that each inclusion V C U of open sets in X determines a function 

P(V c U) : PU ----+ PV, (4) 

which we will often write for each t E PU as t f--t t/v, just as if it were 
restriction of an actual function t. Moreover, (tlv)lw = tlw whenever 
WcVcU. 

Definition. A sheaf of sets F on a topological space X is a functor 
F: O(X)OP ----+ Sets such that each open covering U = Ui Ui , i E I, of 
an open set U of X yields an equalizer diagram 

FU --~--> II FUi ~ II F(Ui n Uj ), 

i,j 
(5) 
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where for t E FU, e(t) = {tlUi liE 1} and for a family ti E FUi, 

p{ti } = {til(uinuj)}' q{td = {tjl(uinuj)}· 

A morphism F --t G of sheaves is a natural transformation of func
tors. Sh(X) will denote the category of all sheaves F of sets on X, with 
these morphisms as arrows; so, by definition, Sh(X) is a full subcate-

- O(X)OP gory of the functor category O(X) = Sets . A separated presheaf 
is a functor F, as above, such that the map e in (5) is injective, (i.e., 
a monic in Sets), though not necessarily the equalizer of p and q. For 
example, the functor B, with each B(U) the bounded real-valued con
tinuous functions on U, is a separated presheaf but not a sheaf. 

Since an arrow into a product is determined by its components (its 
composites with the projections of the product), the maps e, p, and q of 
the diagram (2) are the unique maps which make the diagrams below 

FUi F(UinUjCUi» F(Ui n Uj ) 

/r r 
FU ---~---> II FUi ::::~::::~ II F(Ui n Uj ) (6) 

~i 1 i,j 1 
FUj F(UinUjCUj» F(Ui n Uj ) 

commute for all i, j E 1, where the vertical maps are the (various) pro
jections of the products in question. This categorical description of the 
equalizer diagram means that our definition applies with Sets replaced 
by other suitable categories, and so defines sheaves F: O( X)OP --t C of 
C-objects on a space X, where C is any category with all small products. 
The classically useful cases are sheaves of abelian groups, of rings, and 
of R-modules and R-algebras, for various rings R. Sheaves of modules 
are important as coefficients for the cohomology of a space. 

Note that the definition of a sheaf implies that every sheaf F must 
send the empty set (/) onto a one-point set {*}. For, in any space X the 
empty open set (/) has an empty cover (1 = 0); since a product lli over 
an empty index set 1 is the one-point set {*}, the equalizer (5) becomes 
F(0) --t {*} =4{ *}, so F(0) = {*}, as asserted. 

A subsheaf of a sheaf F on X is defined to be a subfunctor of F 
which is itself a sheaf. The local character of a sheaf is exhibited by the 
following description of a subsheaf: 

Proposition 1. If F is a sheaf on X, then a subfunctor S c F 
is a subsheaf if and only if, for every open set U and every element 
f E FU, and every open covering U = U Ui , one has f E SU if and only 
if flu i E SUi for all i. 



68 II. Sheaves of Sets 

Proof: The stated condition is clearly necessary for S to be a sheaf. 
Conversely, consider the commutative diagram 

with vertical maps monic and bottom rowan equalizer. The last con
dition of the proposition states precisely that the left-hand square is a 
pullback. It follows by a diagram chase that the top row is an equalizer. 

If f: X --- Y is a continuous map of spaces, then each sheaf F on X 
yields a sheaf f*F on Y defined, for V open in Y, by (f*F)V = F(f-l V); 
that is, f*F is defined as the composite functor 

O(y)OP ~ O(X)OP ~ Sets. 

This sheaf f*F is called the direct image of F under f. The map f* so 
defined is clearly a functor 

f*: Sh(X) --- Sh(Y). 

Also (fg)* = f*g*, so the definition Sh(f) = f* makes Sh a functor on 
the category of all small topological spaces. In particular, if f: X --- Y 
is a homeomorphism, f* gives an isomorphism of categories between 
sheaves on X and sheaves on Y. 

Let U be an open set in the space X. Any sheaf F on X, restricted to 
open subsets of U, is clearly a sheaf Flu on U. In this way, U f---+ Sh(U) 
and U ::> V f---+ (Flu f---+ Flv) define a contravariant functor on O(X). In 
fact, since the notion of a sheaf is "local", this functor is itself almost a 
sheaf: 

Theorem 2. If X = U Wk is an open covering of the space X, and 
if, for each k, Fk is a sheaf of sets on Wk such that 

(7) 

for all indices k and C, then there exists a sheaf F on X, unique up 
to isomorphism, with isomorphisms Flwk ~ Fk for all indices k, which 
match on the equation (7). 

Proof: Write Fki for the sheaf (7) on W k n Wi. If the desired sheaf 
F exists, then for each open U one must have an equalizer 

FU ----- IT Fk(U n Wk) ===t IT Fki(U n W k n Wi). (8) 
k k~ 
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Take this as the definition of each set FU. If U "J V, a comparison 
with the equalizer definition of FV gives a unique map FU ~ FV, 
and, with these maps as the restrictions, F is a functor on O(X)OP, 
so is a presheaf. To prove it a sheaf, consider any covering Ui of U 
and construct the commutative 3 x 3 diagram with first column FU ~ 
I1 FUi:::::l I1 F(UinUj) and with rows the definitions, like (8), of FU and 
FUi . Then all these rows and (Fk being a sheaf) the last two columns are 
equalizers. A simple diagram chase resembling that for the 3 x 3 lemma 
(see [Mac Lane, 1963, Lemma XII.3.3]) then proves that the left-hand 
column is an equalizer, so that F is indeed a sheaf. Uniqueness up to 
isomorphism is evident from the similar uniqueness of the equalizer (8). 

Many explicit sheaves can be constructed from the local pieces Fk , 

according to the instructions contained in the proof of this theorem. A 
more liberal version of Theorem 2 is stated in Exercise 8. 

Another method of constructing sheaves on a space X is given by 
Theorem 3 below. Let B c O(X) be a basis for the topology on X. So 
for any point x E X and any open set U containing x, there is a basic 
open set B E B with x E B cU. Moreover, we shall assume that B is 
closed under finite intersections (but this is not strictly necessary, cf. the 
Appendix, §4). B can be viewed as a full subcategory of O(X), so it 
makes sense to speak of presheaves on B, i.e., functors F: BOP ~ Sets. 
Such a functor F is called a sheaf on B if for any basic open set B E B 
and any open cover B = UiEI Bi of B by basic open sets Bi E B, the 
diagram 

i,j 
(9) 

analogous to (5), is an equalizer diagram. A morphism of sheaves on B 
is a natural transformation; so one obtains a category Sh(B) of sheaves 
on B. Clearly, any sheaf F: O(X)OP ~ Sets on X restricts to a sheaf 
on B, and this process defines a functor r: Sh(X) ~ Sh(B). 

Theorem 3. For a basis B of the topology on a space X, the re
striction functor r: Sh(X) ~ Sh(B) is an equivalence of categories. 

More informally, this theorem says that a sheaf F on X, or a map 
T; F ~ G between sheaves on X, may equivalently be defined by spec
ifying the values F(U), or the components TU, only for basic open sets 
U. This theorem is a special case of a result in the Appendix. We leave 
a direct proof to the reader as Exercise 4. 

2. Sieves and Sheaves 

On any space X, each open set U determines a presheaf Hom( - , U) 
defined, for each open set V, by 
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Moreover, the equivalence is given by the functor 

E -.:.. Sh(C, J), E 1---+ Home( - , E). (1) 

Corollary 2. Every Grothendieck topos E has a small site which is 
subcanonical and closed under (any subset of) the following operations: 
finite limits, exponentials, countable colimits, subobjects, quotients by 
equivalence relations. 

Proof: Take a small site (C, J) for E. We may assume that C is a 
full subcategory of E and, by Lemma 3.1, that the topology is sub canon
ical. Then take the full subcategory D of E which is the closure of C 
under all of (or any selection of) the operations listed in the statement of 
the corollary. This closure D is still (equivalent to) a small subcategory 
of E, and D generates E since C already generates E. By Corollary 1, the 
category D, equipped with the topology given by epimorphic families, 
is a sub canonical site for E. 

Since the site for a Grothendieck topos is not uniquely determined 
by the topos, it is useful to examine the relations between different sites. 

We now formulate a comparison between sheaves on a given site and 
those on a smaller related site. If (C, J) is a site and A is a subcategory 
of C, one says that a covering sieve 8 on an object C of C is a "cover 
by objects from A" when every arrow C' �~� C of the sieve 8 factors as 
C' �~� A �~� C for some object A of A. When such a sieve 8 exists, C 
is said to be covered by objects from A. The desired comparison may 
now be formulated as follows: 

Corollary 3 ("The Comparison Lemma"). For a subcanonical 
site (C, J), let A be a full subcategory ofC for which every object ofC 
has a cover by objects from A. Define a topology J' on A by specifying 
that a sieve 8 on A is a J'-cover of A iff the sieve (8) which it generates 
in C is a J-cover of A. Then the restriction functor SetsCOP �~� SetsAOP 

induces an equivalence of categories 

Sh(C, J) �~� Sh(A, J'). 

(There are sharper versions of this comparison lemma, for which J 
need not be sub canonical and A <;:;; C need not be full; see, e.g., [Kock, 
Moerdijk, 1991J.) 

Proof: Let E = Sh(C, J), and write as usual ay: C �~� E for the 
Yoneda embedding followed by sheafification. Recall that the topology 
J can be recovered from the category E of sheaves (Corollary III.7.7) 
by the statement that a family {Ii: Ci �~� C} covers C iff the induced 
family {ay( Ci ) �~� ay( C)} is an epimorphic family in the category of 
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sheaves. Moreover, since the topology J is subcanonical, the repre
sentable presheaves y(G) here are already sheaves, so ay(G) ~ y(G), 
for any object G E C. Consider now the subcategory A. The hypothesis 
on coverings by objects of A implies that for each object Gin C there is 
a set Ai of objects from A such that there is a family of maps y Ai ----+ yG 
which is epimorphic in the category of sheaves. Since C generates E, so 
does A. Now take the topology J' on A to consist of those sieves S 
which are epimorphic families in E. Then by Corollary 1 we have an 
equivalence E ~ Sh(A, J'). 

To see that this topology J' is as described in the statement of the 
corollary, consider such a sieve S on an object A of A for which the map 

U y(B) -----7 y(A) 
u 

is epi in E, where u ranges over the arrows u: B ----+ A in S. Then by 
Corollary III.7.5, there is a J-cover T on A in the site C for which every 
v: G ----+ A in T factors through some arrow u: B ----+ A in S. This means 
that T is contained in the sieve (S) generated in C by the arrows in S. 
In particular, (S) is also a J-cover in C. Conversely, consider a sieve S 
on an object A of A for which (S) is a J-cover in C; this means that 
there are arrows hi: Ai ----+ A of Sand k ij : G ij ----+ Ai such that the 
whole family hi 0 kij is an epimorphic family in E. It then follows that 
the hi yield an epimorphic family in E. In other words, (8) a J-cover 
implies that S is a J'-cover. It follows that the topology J' is indeed 
as described in the statement of the corollary. Moreover, the functor 
E = Sh( C, J) ----+ Sh( A, J') giving the equivalence of Corollary 1 is clearly 
the functor which restricts a sheaf on C to one on the subcategory A. 

The utility of this comparison lemma may now be illustrated in sev
eral cases: 

(a) If X is a topological space with the standard notion of open 
coverings, then any basis B ~ O(X) for the topology of X does satisfy 
the hypothesis of the comparison lemma, simply because any open set 
is the union of open sets of a basis. As a consequence, one obtains a 
new proof of Theorem I1.1.3, describing sheaves in terms of a basis. As 
stated there, it follows that a sheaf F on the space X may be defined 
(uniquely up to isomorphism) by specifying the values F(B) only for the 
open sets B of the basis. When the basis B is closed under intersections 
[which are pullbacks in O(X), regarded as a category], such a functor F 
is a sheaf iff 

F(B) -----7 II F(Bi) ====t II F(Bi n B j ) 

i,j 

is an equalizer, for any cover of an element B of B by basis elements Bi 
[as in §III.4(5)]. 



592 Appendix: Sites for Topoi 

(b) For a natural number n, let Mn be the category of all Coo_ 
manifolds of dimension n, equipped with the usual open cover topology 
described in §III.2. Since any n-manifold M is locally diffeomorphic to 
R n and since any M is covered by charts of this form, the comparison 
lemma implies that the category of sheaves on Mn is equivalent to the 
category of sheaves on the site with only one object, the Euclidean space 
Rn, and with all smooth functions Rn ____ Rn as arrows, in which the 
covers are simply families {Ii: Rn ____ Rn} of open embeddings which 
cover Rn, in the sense that Rn = Ui li(Rn). Notice that a sheaf on this 
site is a set, equipped with an action by the monoid of smooth functions 
Rn ____ R n, and satisfying a suitable sheaf condition. 

(c) Consider the double negation (or, the dense) topology on a poset 
P, as in §II1.2 example (e). The poset P is called "separative" ([Jech 
1978]) or "refined" ([Bell 1977]) if it has the following property 

(i) q 1:. p implies that there exists some r ::; p such that s ::; r implies 
s 1:. q. 

For such a poset one may prove (much as in the special case of the Cohen 
poset treated in §VI.2) that every representable functor P( _ ,p): pop ____ 

Sets is a sheaf; thus the topology is subcanonical. Now recall that an 
ideal U in a poset P is a subset U ~ P such that 

(ii) For p, q E P, p::; q E U implies p E U. 

Also an ideal U is closed when in addition 

(iii) For a set D ~ P dense below PEP, D ~ U implies p E U. 

(Recall that a subset D is said to be dense below p if for any q ::; p there 
exists an rED with r ::; q.) Any ideal U of P is contained in a smallest 
closed ideal U, defined by 

p E U iff { q I q ::; p and q E U} is dense below p. 

The intersection of two closed ideals is closed, while each family of closed 
ideals Ui has as a supremum, the closure of the union. In fact, one easily 
shows that the closed ideals in P form a complete Boolean algebra B(P). 
When P is separative, as in (i), every principal ideal (p) = {q I q E 
P, q ::; p} is closed. Hence there is an embedding 

i: P <-----+ B(P), p ~ (p). (2) 

Now on the category P take the dense topology, and on the complete 
Boolean algebra B(P) of closed ideals take the topology where a cover 
is a (possibly infinite) supremum, as for cHa's in §III.2 example (d). 
Then for any ideal U, 

U = V {(p) I p E U}, 
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so every object of the large site B(P) of (2) is covered by images i(p) = 
(p) from the smaller site P. Moreover, any sieve U on p [that is, any 
ideal U ~ (p)] gives a cover V{ (q) I q E U} = (p) of i(p) in B(P) just 
when this sieve U is dense below p, that is, exactly when U covers p in 
the dense topology. Therefore, the topology on P induced by i is indeed 
the dense topology. The comparison lemma thus yields an equivalence 
of sheaf categories 

Sh(P) ~ Sh(B(P)). 

This states that any model of set theory constructed (as in the method 
of Cohen, Chapter VI) by sheaves on a separative poset can also be con
structed by sheaves on the associated complete Boolean algebra. Briefly, 
this means that forcing a la Cohen has the same content as Boolean
valued models. 

As another application of Giraud's theorem, one obtains the follow
ing result which compares the Grothendieck topoi of Chapter III with 
the elementary topoi of Chapter IV. (Recall that every Grothendieck 
topos is an elementary topos.) 

Proposition 4. An elementary tapas E is a Grothendieck tapas iff 
E has all small coproducts and a small set of generators. 

Proof: Clearly any Grothendieck topos is an elementary topos with 
coproducts and a set of generators [ef. the easy direction (::::}) of Giraud's 
theorem]. For the converse, suppose E is an elementary topos with small 
coproducts and a set of generators. We will check that E satisfies the 
conditions (i)-(v) of Giraud's theorem. Condition (v) is satisfied by as
sumption. E also satisfies condition (i), since coproducts in a topos are 
disjoint (Corollary IV.lO.5), and they are preserved under pullback since 
pullback functors have right adjoints (Theorem IV.7.2). Furthermore, 
in an elementary topos E every epimorphism B --+ A is the coequalizer 
of its kernel pair (Theorem IV.7.S), hence gives rise to an exact dia
gram B x A B ~ B --+ A. This diagram remains exact after pulling back 
because epis in a topos are stable under pullback (Proposition IV.7.3). 
This shows that E satisfies conditions (ii) and (iv) for Giraud's theo
rem. Finally, to verify condition (iii), consider any equivalence relation 
R ~ E x E in E. Since finite colimits exist in any topos (Chapter IV), 
the co equalizer E --+ E / R of R ~ E exists in E. It remains to show 
that R is the kernel pair of its coequalizer E --+ E / R. An easy diagram 
argument shows that if R is the kernel pair of any arrow E --+ D, then 
it must also be the kernel pair of its coequalizer E --+ E / R. Therefore, 
the following lemma completes the proof of the proposition. 

Lemma 5. In a tapas E, any equivalence relation R ~ E x E is the 
kernel pair of some arrow E --+ D. 
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Proof: Let (00, (1): R>--+ E x E be an equivalence relation, let 
XR: E x E ~ n be its characteristic map, and let </>: E ~ nE be the 
transpose of XR. We claim that R is the kernel pair of </>. (The reader 
may wish to check first that this is indeed the case when [; = Sets.) 
First we show </>00 = </>01' Since R is symmetric, there is the usual 
"twist-map" T: R ~ R which makes the diagram 

R T I R 

(OO'O~ /a,,00) 

ExE 

commute. Also recall the pullback (3) from the first section, repeated 
here as 

R------:::---+I E. 
00 

(3) 

Since R is transitive, the map (007r1' 017r2 ): R * R ~ E x E factors 
through R, and we denote this factor by p: R * R ~ R (so ooP = 

007r1,01P = 017r2). Now from the pullback (3), one readily deduces by 
elementary diagram-arguments that the following two squares are also 
pullbacks: 

R * R __ 7r.o...l --+) R 

(0071"1'71"2)1 1(00 ,0') 

E x R -------+) E x E, 
1 x 00 

R * R __ T:...:.71":.::.2_-+) R 

(0171"2,71"1) 1 1 (00,01) 

Ex R ------,------+) E x E. 
1 X 0, 

(4) 

But the two subobjects of E x R appearing on the left of these diagrams 
are isomorphic, as follows from the commutativity of 

(3 
R * R =:< ========::;) R * R 

(0071"1'71"~ a /"71"2'71"') 
ExR 

a = (7r2' Tp) 

(3 = (Tp, 7rd; 
(5) 

the notation on the right means that a: R*R ~ R*R is the unique arrow 
with 7r1a = 7r2 and 7r2a = TP, and similarly for (3. It then follows readily 
that the triangle (5) with a-and also that with (3-is commutative. To 
show that (3a is the identity, use 7rI((3a) = Tp(7r2 , Tp) and hence that 

00(7r1(3)a = 01P(7r2, Tp) = 01 7r2(7r2, Tp) 

= 01 TP = ooP = 007r1 , 

01 (7r1(3)a = 00P(7r2,Tp) = 007r1(7r2,Tp) = 007r2 = 017r1. 
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Therefore, by the pullback (3), 7rd3a = 7rl, while 7r2f3a = 7r2 is immedi
ate. Thus f3a = (7rl' 7r2) = 1, as desired. The proof that af3 = 1 is dual 
to this. 

It follows that these two isomorphic subobjects of E x R in (5) have 
identical characteristic maps. Juxtaposing both pullbacks in (4) with 
the pullback 

R ) 1 

(80 /h) 1 ltrue (6) 

ExE XR 
)0, 

we find that these characteristic maps are exactly XR 0 (1 x 80 ) and 
XR 0 (1 x 8d, respectively. But when these maps are equal, then so are 
their transposed maps cj;80 and cj;8l : R --* OE. 

Next, to show that (80 ,8d is the kernel pair of cj;: E --* OE, take 
any object X and any arrows f, g: X --* E such that cj;f = cj;g. We need 
to find an arrow h: X --* R such that 80 h = f and 8 l h = g. Such an h 
is necessarily unique since (80 , 8d: R --* E x E is monic. Consider the 
two pullbacks of R along 1 x f and 1 x g, as in the diagram 

ExX lxf ) ExE ( lxg 
ExX 

afl 1 (80 ,8,) lag (7) 

Pf bf )RI bg Pg. 

Juxtaposing each of these pullbacks with (6), taken upside down, one 
finds that the monos af and ag have the respective characteristic maps 
XR 0 (1 x 1) and XR 0 (1 x g): E x X --* O. The transpose X --* OE 
of these maps are cj; 0 f and cj; 0 g, respectively. Hence, since cj;f = cj;g 
by assumption, also XR 0 (1 x 1) = XR 0 (1 x g). So Pf and Pg are 
isomorphic as subobjects of E x X, say by an isomorphism e: Pf --* Pg 

with age = af. Now consider the map (f, 1): X --* E x X. Since 
(f, 1): (1 x 1) 0 (f, 1): X --* E x E factors through the diagonal b.: E --* 

Ex E, hence through R <::;;: Ex E by reflexivity, it follows from the left
hand pullback in (7) that (f, 1) factors through af, say as (f, 1) = afk. 
But then (f, g) = (1 xg)o(f, 1) = (1 xg )afk = (1 xg)agek = (80 , 8dbgek. 
So h = bgek is the arrow X --* R with the property that 80 h = f and 
81 h = g, as required. This proves the lemma, and so completes the proof 
of Proposition 4. 

Giraud's Theorem often enables one to recognize a certain category 
as a Grothendieck topos, even in cases where an explicit description of 
a site may not be immediately available. A typical example is t~le case 
of equivariant sheaves. 
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Let G be a topological group acting continuously on a topological 
space X, say from the left. Write 

p,: G x X --+ X, t-t(g,x)=g'x 

for the action map. A G-space over X is a space p: E --+ X over X with 
an action of G on E such that p respects this action, as in 

G x X --,/-'.,-----+) X. 

A map of G-spaces over X is simply a map of spaces over X which 
respects the G-action; thus, there is a category of G-spaces over X. 
Such a G-space over X is called etale if the map p: E --+ X is an etale 
map. 

Recall from Chapter II that sheaves on a space X may be identified 
with etale spaces p: E --+ X over X. We define a G-equivariant sheaf 
on X to be an etale G-space over X, and write 

She (X) 

for the category of such equivariant sheaves; it is a full subcategory of 
the category of G-spaces over X. 

Proposition 6. For any continuous action of a topological group G 
on a space X, the category She(X) of G-equivariant sheaves on X is a 
Grothendieck topos. 

Proof: Consider the faithful forgetful functor 

U: She (X) --+ (Etale / X) ~ Sh(X) 

("forget the G-action") from G-equivariant sheaves to etale spaces over 
X. If E --+ X and F --+ X are etale G-spaces over X, then their product 
in the category of etale spaces over X, i.e., their pullback E Xx F --+ X, 
has an obvious G-action which makes it into the product in the category 
She(X). In other words, the functor U creates products. In the same 
way, one shows that U creates all finite limits and all colimits. Conse
quently, She(X) inherits all the exactness properties from the category 
of etale spaces over X (i.e., of sheaves on X). So She(X) satisfies all 
the conditions of Giraud's theorem, except perhaps the last condition 
concerning generators. 

In order to show that She(X) has a set of generators, consider any 
etale G-space p: E --+ X. Then since p: E --+ X is etale, there is for each 
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point e E E a section s: U ---* E over some open set U ~ X such that e 
lies in the image of s. In other words, the set of all sections s: U ---* E 
of p is an epimorphic family to E. For each such section s: U ---* E, 
let G· s(U) = {g. s(x) I x E U,g E G} be the closure of the subset 
s(U) ~ E under the action of G on E. This set G· s(U) is an open subset 
of E because s(U) ~ E is open (any section of an etale space is an open 
map), and hence so is its translation g . s(U) = {g. s(x) I x E U} ~ E 

under any homeomorphism e f-+ g. e: E ~ E. Hence the union G· s(U) 
of all these translates g. s(U), for all g E G, is also open. It follows that 
the restriction pl(G· s(U)) of p: E ---* X to this open subspace is again 
etale. Thus, we get a commutative diagram 

G· s(U)r-) ---+) E 

Ple.S(~ ;. 
X 

in the category of etale G-spaces over X. Since G· s(U) ~ E contains 
the image of s: U ---* E, it follows that the collection of all these G-maps 
G· s(U) >---+ E, for all sections s on all open subsets U ~ X, form an 
epimorphic family in the category She(X). Therefore, the collection 
of all etale G-spaces of the form G· s(U) ---* X generates the category 
She (X). But there is only a set of such etale G-spaces, up to isomor
phism. For the surjection (g, x) f-+ g. s(x) displays G· s(U) as a quotient 
of G x U, and clearly, up to isomorphism, there is only a set of such 
quotient spaces G x U with U an open subset of X. This shows that 
She (X) has a set of generators. 

Notice that for the case where X is the one-point space, the category 
She(X) is the category of continuous left G-sets. The site produced for 
this category by Giraud's theorem is exactly the site constructed in §III.9 
(apart from the fact that we considered right actions there). 
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In this epilogue we will make some suggestions for further reading 
related to topos theory. We do not at all aim to provide an exhaustive 
description of the available literature, but only wish to mention some 
useful books and articles in each of the various directions described be
low. 

Background in Category Theory and Topology. In our book, 
we have assumed only a minimal acquaintance with category theory. 
Some of the authors mentioned below assume quite a bit more, so a 
reader might wish to deepen his understanding by consulting one of 
the several general texts available, such as Mac Lane ("CWM", 1971), 
Pareigis (1970), Schubert (1970), or Freyd, Scedrov (1990). Various 
texts on categorical topology and on categories as used in computer sci
ence are not really relevant, at least for our purposes. Fibrations-or the 
essentially equivalent notion of indexed categories-occur frequently in 
topos theory. Pare and Schumacher (1978) describe indexed categories; 
Gray (1966) has an extensive description of fibrations, while Benabou's 
article (1985) provides some controversy as well as a good list of ref
erences on fibrations. An early article (1967) of Benabou gives a good 
introduction to the useful notion of a bicategory. For closed categories 
(those with an internal hom-functor and the corresponding tensor prod
uct) one may consult Kelly (1982). The latter book also covers enriched 
categories (those where the hom-functor takes values in a closed cate
gory). For double categories, n-categories, and the newer w-categories, 
one may consult Kelly, Street (1974) or Street (1987). 

Categories arose originally in topology and have their first applica
tion in axiomatic homology theory, in the famous book by Eilenberg and 
Steenrod (1952). The connection with homotopy theory and simplicial 
sets is explored in Gabriel, Zisman (1967); the same source has a good 
description of categories of fractions. Two other useful introductions to 
the theory of simplicial sets are May (1967) and Lamotke (1968). Among 
general texts on topology, we mention Dold (1972), Adams (1972), and 
Massey (1991). For the history of algebraic topology, consult the com
prehensive book by Dieudonne (1989); for that of category theory see 
an article by Mac Lane (1988). 

Background in Sheaf Theory. Sheaf theory started in complex 
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analysis and was developed chiefly for its use in defining the cohomology 
of suitable spaces. Chapter II has described sheaves on spaces; we have 
omitted sheaf cohomology-but with great regrets. The short book by 
Tennison (1975) may serve as a good introduction. The earlier book by 
Swan (1964) is also short, more sophisticated, and clear, while the clas
sical text on sheaves in topology is still Godement (1958). Another com
prehensive introduction is Iverson (1986). The role of sheaves in homol
ogy (Borel-Moore homology) is described here and in Dieudonne (1989). 
J. Gray has an extensive article (1979) on the history of sheaves. Fa
mous papers by Serre (1955, 1956) pioneered the introduction of sheaves 
in algebraic geometry. 

Since much of sheaf theory (and of topos theory) is concerned with 
cohomology, many of the references in this direction require some back
ground in homological algebra. This is the title of the famous first 
book by Cart an and Eilenberg (1956). More accessible introductions are 
Hilton, Stammbach (1971) and Rotman (1979). The earlier introduction 
by Mac Lane (1963) is more encyclopedic (for its time). Grothendieck's 
fundamental paper (1957), usually cited as "Tohoku", is still well worth 
reading for its exciting discovery that abelian categories and homological 
algebra apply to sheaves. 

Algebraic Geometry. In the modern treatment of algebraic ge
ometry (since Grothendieck) sheaves and schemes playa central role. 
There is an introduction to schemes by MacDonald (1968), a leisurely 
presentation of algebraic geometry in Shafarevich (1977), and a more en
cyclopedic presentation in the text of Hartshorne (1977). Mumford's fa
mous introduction (The Red Book) has finally appeared in the Springer 
Lecture Notes. There is a more categorical description of schemes as 
given in the context of algebraic groups in Demazure, Gabriel (1970), 
and in SGA3. Grothendieck topoi arose in algebraic geometry as a way 
to define cohomology theories which would be suitable to solve the fa
mous Weil conjectures; etale cohomology and crystalline cohomology are 
two examples of such theories. The original, systematic and exhaustive 
treatment is that given in SGA4 by Grothendieck and his school, but 
many readers may well be discouraged to face the 1600 pages of this 
three-volume work, while subsequent books by Deligne and Milne man
age to thoroughly hide the categorical and topos-theoretic connections. 
Artin's early notes (1962) on Grothendieck topologies are more accessi
ble; Illusie (1972) is also a standard source. A more recent exposition 
of etale cohomology is given in the book (1988) by Freitag and Kiehl. 
Etale cohomology is the cohomology of the so-called etale topos associ
ated to a given scheme or variety. This cohomology does not function 
well for p-torsion abelian sheaves in case the prime p is also the char
acteristic of the variety; for recent attempts to deal with this case see, 
e.g., Ogus (1990). Among the Grothendieck topologies other than the 
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Zariski, etale, and crystalline ones, we mention the one recently intro
duced by Nisnevich (1989). The literature on nonabelian cohomology is 
also considerable; for the recent state of affairs as well as many references 
one may consult Breen (1990). 

General Reading on Elementary Topoi. A standard reference 
is Johnstone (1977); it contains most of the material on elementary topoi 
known at the time of its publication. The presentation is terse and re
quires some sophisticated category theory-it is not a book to read on 
the beach. Inevitably it does not include some of the more recent de
velopments, and so does not present the use of locales which now playa 
central role in topos theory. A more recent introduction to topos theory 
is the book by Barr and Wells (1985), which is chiefly written from the 
viewpoint of categories, rather than that of logic or geometry. It starts 
with a nice introduction to category theory, and an excellent descrip
tion of monads (there called triples) and their algebras. Ehresmann's 
"sketches" are also discussed, and good use is made of representation 
theorems, in the style pioneered by Freyd in his (1972), still well worth 
reading. The recent Freyd, Scedrov book (1990) contains many use
ful insights connected with topoi and with categories of relations. The 
rapid presentation is original in form and content. Older references are 
the good survey paper by Wraith (1975), and the earlier lecture notes by 
Kock and Wraith (1971), still available from Aarhus University. Only 
cognoscenti will be able to get at influential early notes-by Tierney at 
Varenna (1971), by Benabou in his seminar (1970), and the legendary 
Perugia-notes of Lawvere (1973). By all means look at the first presenta
tion of elementary topoi in Lawvere's paper at the 1970 Nice Congress. 

Among the many recent developments, we will mention literature in 
several directions in the paragraphs below. 

Topoi and Mathematical Logic. An elementary topos can be 
viewed as a model of some intuitionistic version of higher-order logic. 
This aspect is discussed in Boileau, Joyal (1981) and extensively in the 
book by Lambek and Scott (1986). The latter presentation is a little on 
the formal side, but it contains several nice applications of topos theory 
to the proof theory of intuitionistic higher-order logic. There is also a 
careful discussion of the intimate relation between cartesian closed cate
gories and the typed lambda-calculus, based on the observation that the 
adjunction between product and exponential is essentially an application 
of the lambda operator. 

A more recent book by J. L. Bell (1988) provides a systematic pre
sentation of topos theory from the point of formal logic. Thus, Bell 
introduces a version of the Mitchell-Benabou language very early, and 
then proceeds to prove the standard facts about an elementary topos 
(our Chapter IV) in a strictly formal style, with most inferencesexplic
itly exhibited, much as in the Gentzen calculus. This should be attrac-
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tive to those readers comfortable with such styles. Bell's last chapter 
discusses some of Lawvere's insights concerning the philosophy of our 
subject. 

In the direction of foundations we quote first of all Lawvere's 1964 
article "An elementary theory of the category of sets" which proposed 
a new and strictly categorical foundations for mathematics. The pro
posed axiomatics now takes the form of the axioms for a well-pointed 
topos, as presented in our Chapter VI. The relation of these axioms to 
those for (weak) Zermelo set theory was explored in Cole (1973) and 
Mitchell (1972) using trees as in our Chapter VI. Further foundational 
aspects are discussed in Mac Lane (1986) and in Mathias (1987); much 
remains to be clarified and extended. 

Cohen's (1963) use of forcing for independence proofs in set the
ory is intimately related to sheaf theory, as first observed by Law
vere and Tierney; see Tierney (1972). For the background in forcing 
there are now many texts on set theory available, of which we men
tion Jech (1978) and Kunen (1980), and, for Boolean valued models, 
Bell (1977). An earlier reference by Fitting (1969) also discusses the 
connections between forcing and Kripke semantics. Fourman's paper 
(1980) discusses the relation between sheaves and forcing, and gives a 
construction in any Grothendieck topos of (an intuitionistic version of) 
the standard set-theoretical hierarchy. This construction is also used by 
Freyd (1980) in his beautiful proof of the independence of the axiom of 
choice (presented in our Chapter VI). An exposition of Freyd's methods 
as well as a comparison to standard set-theoretical approaches appears 
in Blass, Scedrov (1989); Solovay, unpublished, has done related studies. 
M. Bunge (1974) describes the proof of the independence of the Souslin 
conjecture in topos-theoretic terms. 

In addition to the general connection with intuitionistic logic [as in 
Lambek, Scott (1986)] there are also applications of topos theory to spe
cific questions of consistency and independence in intuitionistic analysis, 
such as our discussion in Chapter VI of Brouwer's theorem on contin
uous functions. An exposition of some results in this direction can be 
obtained from Fourman, Hyland (1979); for a more elementary and ex
tensive exposition, one may consult Chapters 14 and 15 of Troelstra, 
Van Dalen (1988). The relation between topos theory and Kleene re
cursive realizability is discussed in Hyland (1982), where the "effective 
topos" is introduced. 

Another connection between topoi and logic is that between classify
ing topoi and geometric theories (our Chapter X). Early sources related 
to classifying topoi are Hakim (1972) and Tierney (1976). The mono
graph by Makkai and Reyes (1977), stimulated by work of Joyal, gives a 
presentation of the theory of classifying topoi, and the relation between 
a geometric theory and its category of models. 
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Locales and TopoL As we have noted, locales ("pointless spaces") 
play a central role in topos theory. An introduction to locales is pro
vided by Johnstone's book (1982), and by Joyal and Tierney in the first 
part of their (1984) paper, referred to as JT. But beware: what we and 
Johnstone call a frame and a locale is in JT called a locale and a space, 
respectively. The main result of JT is that every Grothendieck topos is 
equivalent to a topos Shc(X) of equivariant sheaves, as in our Appendix, 
§4, except that X is a locale rather than a topological space, and G is not 
a group acting on X, but (more generally) a groupoid in the category of 
locales, with X as locale of objects. Such a groupoid is also called a con
tinuous groupoid. This result is strengthened in Moerdijk (1988), where 
it is shown that topoi can be obtained by a calculus of fractions from 
continuous groupoids, and in Joyal, Moerdijk (1990), where it is shown 
that it suffices to consider continuous groupoids consisting of homotopy 
classes of paths (much like the fundamental groupoid of a space), and 
where cohomological aspects of this representation are considered. 

Geometric Morphisms. Special properties of geometric mor
phisms have been examined in a number of cases: (a) open geo
metric morphisms (also briefly discussed in our Chapter IX); (b) lo
cally connected (or "molecular") morphisms-generalizing those maps 
of spaces in which the fibers are locally connected; (c) atomic geomet
ric morphisms-those whose inverse image functor is a logical functor; 
(d) localic morphisms-a relative version of localic topoi; (e) local ge
ometric morphisms-generalizing the spectrum of a local ring. Useful 
references in this direction are: for (a), Johnstone (1980) and JT; for 
(b), Barr, Pare (1980) or the appendix of Moerdijk (1986); for (c), Barr, 
Diaconescu (1980) and JT; for (d), JT and Johnstone (1981); for (e), 
Johnstone, Moerdijk (1989). 

The category of Grothendieck topoi and geometric morphisms be
tween them has all small limits and colimits (in the appropriate 2-
categorical sense), but their constructions are quite involved: pullbacks 
are described in Giraud (1972) and Diaconescu (1975), while filtered 
inverse limits already occur in SGA4 and are further studied in Mo
erdijk (1986); the existence of all small colimits occurs in Moerdijk 
(1988), and, more systematically, in Makkai, Pare (1989). 

Topoi and Algebraic Topology. A topos, as a kind of general
ized space, is open to the methods of algebraic topology, for example, 
to simplicial methods. This intriguing area has not been developed sys
tematically, so we will just mention some suggestive sources. An early 
example is Artin, Mazur (1969), where the "etale" homotopy groups 
7r~t(E,p) are defined for a topos E with a base point p: Sets --+ E, using 
Verdier's "hypercovers" of E. For the topos of sheaves on a "good" space 
X, these etale homotopy groups are shown to coincide with the classical 
ones. The hypercovers used here are suitable contractible simplicial ob-
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jects in E, which Verdier used earlier to compute the cohomology of the 
topos E. A more "rigid" version of etale homotopy has been developed 
in the context of simplicial schemes by Friedlander (1982), with the aim 
of solving the Adams conjecture in classical homotopy theory by meth
ods from algebraic geometry ("in characteristic p"); in this context the 
papers by Quillen (1968) and Joshua (1987) are also relevant. 

Joyal and Wraith (1983) showed how the cohomology of a topos 
can be classified (in the sense of our Chapter VIII) by a suitable "Eilen
berg, Mac Lane" topos K( 7r, n). By simplicial methods they showed that 
this topos K( 7r, n) is cohomologically equivalent to the usual Eilenberg
Mac Lane space K (7r, n) of algebraic topology. 

The "closed model structures" of Quillen have been influential: in 
(1967) and (1969) he showed that much of homotopy theory can be 
developed on the basis of the axioms (for the "fibrations", "cofibrations" 
and "weak equivalences") of such a model structure. One reason that 
simplicial techniques apply well to topoi is that the simplicial objects in 
a Grothendieck topos have such a closed model structure, as shown by 
A. Joyal in an elegant, as yet unpublished, letter (1984) to Grothendieck. 
A related older paper is Brown (1973), which gives for simplicial objects 
in a sheaf topos a weaker "local" version of a Quillen model structure. 
These simplicial techniques apply also in the context of foliations of 
manifolds. Here the usual "quotient space", with points the leaves of 
the foliation, is usually too degenerate. A. Haefliger (1958), W. T. van 
Est (1984), and many others have proposed modified such "quotients". 
Moerdijk (1991) shows that the homotopy and cohomology groups of 
such a modified "quotient" can be realized as the corresponding groups of 
an appropriate topos of "foliation-invariant" sheaves. Homotopy theory 
of topoi is also implicit in the use of simplicial techniques in K-theory 
and in related topics; cf., e.g., Quillen (1973). Jardine's (1986) paper 
describes in more detail the methods from the letter by Joyal mentioned 
above, and applies these in the context of Suslin's computations for 
the K-groups of an algebraically closed field. Thomason (1985) uses 
simplicial techniques for topoi to compare algebraic and topological K
theory. 

Synthetic Differential Geometry (SDG). Several recent devel
opments have rigorously formulated the properties of infinitesimals-as 
they were once used informally in classical analysis and differential ge
ometry. Robinson's Non-Standard Analysis provides such a formulation 
for invertible infinitesimals. Synthetic Differential Geometry (SDG), on 
the other hand, provides a categorical approach to both nilpotent and 
invertible infinitesimals. It was initiated by Lawvere in 1967, while the 
first topos-theoretic models were constructed by Dubuc [the best ref
erence is Dubuc (1981)]). The early text by Kock (1981) presented 
both a naive (i.e., axiomatic) approach and a categorical model, while 
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Lavendhomme's book (1987) provides an extensive and elegant presen
tation from the naive, synthetic, point of view. Moerdijk, Reyes (1991) 
emphasize topos-theoretic models, as well as the relation to classical 
analysis and nonstandard analysis. 

These indications cover only a few of the possible lines of develop
ment of topos theory. Others may arise, with topoi as carriers of new 
cohomology theories, or as vehicles for the semantics of other logics, or 
as background for simplicial techniques. 
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Arrows 

----> morphism, functor, 
10 

>---+ monomorphism, 11 
-- epimorphism, 11 
~ isomorphism, 11 
"" isomorphism, 11 
...... effect of map on an 

element, 28 
{.}s singleton B ----> PB, 

166 

Logic 

A and, 48, 296ff 
V or, 48, 296ff 
=> implies, 48, 296ff 

not, negation, 48, 
296ff 

double negation, 272 
T identically true for-

mula, 529 
.1 identically false for-

mula, 529 
:3 there exist, 57 
V for all, 57 
If- forces, 303, 315 
{x I 'P(x)} 

all x with property 'P, 300 
{(Xl, ... ,Xn ) I 'P}M 

extension of 'P in model M, 
530,532 
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Operations for 
Categories 

TI 
TIi 

Jp 

ide 

adjoint (left .., right), 
17 

product, 9, 14 
pullback over A, 14, 

30 
product, 9, 14 

product over i E I, 
65 

coproduct, sum, 187 
coproduct, 17 

coproduct over i, 75 
terminal object, 14 
initial object, 17 
tensor product over 

e,355ff 
unique arrow 

B ----> 1,165 
pullback along /, 59, 

193 
left adjoint to r, 59, 

193 
right adjoint to r, 

59, 193 
pullback of subob

jects along k, 186 
left adjoint to k- 1 , 

58, 186 
right adjoint to k- 1 , 

58, 208 
category of elements 

of P, 41 
identity functor, 7 
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Sets and Order ConLex continuous left exact 
functors, 561 

0 empty set, 35 Def (M) definable objects for 
1 one-point set, 14 model M, 542ff 

{*} one-point set, 14,30 £ topos, large cate-
n intersection, 186 gory, 161 
U union, 187 £a G-objects for inter-

S partial order, 49 nal group G, 238 
1\ (internal) meet, 49, £a topos of coalgebras 

198 for comonad G, 
V (internal) join, 49, 251 

198 £j j-sheaves in £, 223 
T top element, 198 £00 filter quotient topos, 
..l bottom element, 198 260 
E member of, 299 £/U filter quotient topos, 
lp down segment, 258 261 

488 Fin category of finite 
jp up segment, 488 sets, 437 
(x,y) ordered pair, 14 fp-rings finitely presented 
< x,y > ordered pair, 298 rings, 441 

Flat category of flat func-
tors, 382ff 

Categories (Frames) category of frames, 
474 

Aa category of coalge- Hom category of geomet-
bras, 249 ric morphisms, 

AU category of general- 352 
ized elements, 397 Lex left exact functors, 

BM all right M-sets, 25 440, 442 
BG classifying topos for (Locales) category of locales, 

group G, 24, 434 474 
B(T) classifying topos for LocRing category of local 

theory T, 435 rings, 451 
B(T) sheaves on B(T), Maps(X, Y) all maps X ----t Y, 

561 491 
B(T) syntactic site for T, Mod category of models, 

555 434, 534 
C (small) category, 12 Open(£) open objects in £, 
cop opposite (dual) cate- 189 

gory, 12 (Orders) category of orders, 
C/O slice category, 12 457, 461 
C category of pre- Rex right exact functors, 

sheaves on C, 25 437 
CD functor category, 13 Ring(£) category of rings in 

Cat (£) internal categories £,439 
in £,240 Sepj category of 

ConFlat continuous flat func- separated objects, 

tors, 384, 393 223 
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Sets 

SetsCOP 

Sh(C, J) 
Shj (&) 
Sh(X) 
SimpSets 
(Spaces) 

Ssets 
S[U] 
Tor(&, G) 
Z 

category of sets, 24 

presheaves on C, 25 
J-sheaves on C, 127 
j-sheaves in &, 223 
sheaves on X, 67 
simplicial sets, 29 
category of spaces, 

452,481 
simplicial sets, 453 
object classifier, 439 
G-torsors in e, 430 
Zariski topos, 451 

Greek Letters 

D comultiplication for 
monad,247 

DB equality predicate 
B x B ---+ n, 166 

to counit of adjunction, 
19 

to counit of comonad, 
247 

'T/ unit of adjunction, 
18 

'T/ unit of monad, 176 
A exponential transpo-

sition, 299 
J.L multiplication of 

monad,176 
7r projection, 9 
T twist map, 458 
r <p -, name of <p, 165 
r global sections, 79, 

135,350 
~ constant (pre-) sheaf, 

135, 350 
~ diagonal map, 166 
~ n standard n-simplex, 

27, 454 
~ 'l n-simplex for order 

1,461 
A simplicial category, 

29,452 

A bundle of germs, 84 
II f right adjoint to p.b. 

along f, 59, 193 
Lf left adjoint to p.b. 

along f, 59, 193 
n subobject classifier, 

32 
nj subobject classifier 

for &j, 224 

Arabic Letters, 
lowercase 

a associated sheaf, 
128, 227 

b bottom element, 457 
cHa complete Heyting al-

gebra, 114 
char characteristic map, 

165 
clp covering lifting 

property, 412, 509 
e evaluation, 20 
ev evaluation, 20, 45 
f geometric 

morphism, 348 
r its inverse image, 

348 
f. its direct image, 348 
f! left adjoint of r, 

360 
id identity, 10 
inf infimum (g.l.b.), 49 
j Lawvere-Tierney 

topology, 219 
j nucleus (on a lo-

cale),485 
lim colimit, 22 

lim limit, 21 

n.n.o. natural numbers ob-
ject, 269 

pt(X) points of locale X, 
478 

sup supremum (l.u.b.), 
49 
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t top element, 457 O(X) open subsets of 

true: 1 ---t n universal mono, 32, space X, 65 
163 O(X) frame of locale X, 

trueB : B ---t n 165 474 

Y Yoneda embedding, p+ Grothendieck plus 
26 construction, 129 

PB power object of B, 
162 

Arabic Letters, Q rational numbers 

Capital object, 320 
R real numbers object, 

A closure of subobject 321 
A,220 (R) sieve generated by 

AC Axiom of Choice, R,112 
275 RZC restricted Zermelo 

Aut(N) automorphisms of with Choice, 332 
N,155 8 simplicial set, 453 

BG classifying space of 181 its realization, 456 
G,425 1811 its realization, for I, 

CH Continuum Hypoth- 462 
esis, 267 Sky skyscraper sheaf, 93 

ClSube(E) closed sub objects of Stone (B) Stone space of B, 
E,225 517 

ClSubpr closed subpre- S(X) singular complex, 
sheaves, 509 456 

Epi Object of epis, 286 Sub lattice of subobjects, 
(G,E,8) comonad, 247 11 
Hom(A,B) set of arrows SubPr subpresheaves, 509 

A ---t B, 12 SubSh subs heaves , 509 
I ideal, 116 (T, T/, J-L) monad,176 
I order in topos, 457 Ua universal G-torsor, 
Ix isotropy subgroup, 430 

62 UT universal T-model, 
lAC internal AC, 275 568 
J Grothendieck topol- Xj sublocale for nucleus 

ogy, 110 j,485 
K basis for such, 111 X(M) interpretation 
Loce localic reflection, of sort X in model 

491 M, 529, 532 
Loc(T) locale for space T, Z object of integers, 

475 320 
Match(R,P) matching families, ZF Zermelo-Fraenkel 

129 axioms, 267, 279 
Moh reverse Hom, 359 ZFC idem plus choice, 
N natural numbers ob- 279 

ject, 268 
Nat natural transforma-

tions, 42 



Index 

abelian group 
object, 95 
sheaf of -, 95 

action 
of an internal category, 

243, 354 
of a group, 24, 238, 361 

adjoint functor, 17 
left-, 17 
on the right, 181 
right-, 17 
to pullback, 58, 193 
unit an iso, 369 
counit an iso, 375 

affine 
map, 452 
simplex, 452 
space, 119 

algebra (for monad), 177 
finitely presented-, 119 
free-, 177, 249 

alphabetic variant, 543 
amalgamation, 121, 123 
analytic 

complex-manifold, 78 
continuation, 83 

ancestor (in a tree), 336 
antisymmetry (internal), 199 
arrow, 10 

category, 27 
conditions (for a topology), 110 
universal-, 18 

Artin glueing, 265 Ex. 9 
associated 

bundle, 82 
sheaf, 87, 128, 133, 227 

atlas, 74 
atom 

of a Boolean Algebra, 524 
Ex. 3 
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atomic 
Boolean algebra, 150 
formulas, 529 
topology, 115, 126, 152, 469 

atomless Boolean algebra, 379 
axiom 

of choice, 275, 291ff, 332, 
344 Ex. 5 

of infinity, 268, 332 
of a theory, 531 

Baire space, 345 Ex. 12 
balanced, 167 
Barr's theorem, 515 
barycentric coordinates, 454 
base, 26 

change of-, 59, 193, 349 
space, 79 

basis (for Grothendieck top.), 111 
Beck's theorem, 179, 372 
Beck-Chevalley Cond'n, 159 Ex. 15, 

174, 205, 494 
external-, 174 
internal-, 174, 206 

Benabou (language), 296ff 
Beth, E.W., 298 
Boolean 

algebra, 48, 50, 515, 592 
ring, 516 
topos, 270, 311 
valued models, 283, 593 

bottom element, 198 
bound variable, 529 
boundary, 454 
Bounded Zermelo, 332 
Brouwerian lattice, 50 
Brouwer's theorem, 324ff 
bundle, 79 

associated-, 82 
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etale-, 88 
G- -, 34, 81, 423 
induced-, 30 
vector-,80 

C-action, 243 
C-object, 243, 244 
C-module, 354 
canonical 

morphism, 170 
topology, 126, 490 

Cantor, 277 
space, 470 Ex.10, 525 Ex.6, 

573 Ex.7 
cardinal 

inequalities, 283 
number, 277 

cartesian closed, 20, 46, 167 
category, 10 

2-category of topoi, 352 
cartesian closed-, 20, 46, 167, 600 
comma-, 12, 26, 28 
discrete-, 27 
dual-, 12 
internal-, 240 
locally small-, 12 
of elements, 41, 386 
of fractions, 598, 602 
of generalized elements, 397 
object, 240 
opposite-, 12, 242 
simplicial-, 452 
slice-, 12, 26 
small-, 12 
syntactic-, 555ff 
well-powered-, 32 

chain, 453 
condition, 288 

change of base, 59, 193, 349 
chart, 74 
characteristic 

function, 31 
map, 163 

choice sequences, 325 
classifying 

bundle, 34 
map, 163 
space, 34, 422ff 

classifying topos, 434ff 

Index 

for decidable objects, 470 Ex. 8,9, 
572 Ex. 6 

for G-torsors, 434 
for geometric theory, 561ff 
for objects, 436ff 
for orders, 457ff 
for rings, 439, 447 
simplicial sets as a-, 457ff 
for T-models, 435, 561ff 

closed 
ideal, 592 
sieve, 140 
sublocale, 488 
subobjects, 221, 225 

closure 
downward-, 335 
of a sieve, 141 
of a subobject, 221 
operator, 220, 221 
upward-, 336 

coalgebra, 249 
cofree-, 251 

coarsest topology, 113 
cocomplete, 40, 577 
cocone, 22 
cocontinuous functor, 412 
codomain, 10 
coequalizer, 17 
Cohen, P., 277ff 

poset, 278 
topos, 278, 318 

coherent topos, 521 
cohomology, 422, 599, 603 
collate, 64 
collatable, 65, 104 Ex. 8 
collating, 64 
colimit, 22 

as coequalizer, 355 
filtered, 96 
internal, 256 Ex. 11 
of Grothendieck topoi, 

602 
of sheaves, 135 

comma category, 12, 26, 28 
comonad, 218, 247 

and surjections, 372 
comparison 

functor, 178 
lemma, 155, 590 
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complete 
Heyting algebra, 114, 146, 475, 

497 
lattice, 51 
poset, 56 

complement, 48, 50 
complemented subobject, 468 Ex. 1 
complex 

affine space, 116 
affine variety, 116 

component, 13 
composable pair (internal), 241 
composition, 10 

internal-, 170, 241 
of arrows, 10 
of functors, 13 

comprehension axiom, 332, 340 
restricted-, 332 

comultiplication, 247 
condition, 278 
cone, 21, 385 
constructive proof, 302, 304 
continuity of all functions, 325ff 
continuous 

functions, 324ff 
functor, 384, 393 
G-sets, 26, 150 

constructible set, 279 
continuum hypothesis, 277ff 
contravariant functor, 13, 26 
contravariant hom-functor, 26 
coproduct, 17 

disjoint-, 574 
inclusions, 17 
of topoi, 419 Ex. 13 
stable-, 574 

coreflective subcategory, 90 
coring, 441 
cotangent vector, 76 
cotriple, 247 
counit, 19, 247 
covariant functor, 13 
covariant hom-functor, 13 
cover 

an arrow, 110 
empty-, 149 

covering, 82, 108 
family, 109ff 
lifting property, 412, 509 

map, 82 
regular-, 107 
sieve, 70, 110 
system, 524 Ex. 5 
transformation, 107 
universal-, 82 

covers (in a tree), 336 
countable chain condition, 288 
creates limits, 72 
crible (=sieve), 37 
cross-section, 60, 78, 79 
cumulative hierarchy, 279, 292 
cut and paste, 457 
cycles, 454 

decidable, 470 Ex. 8, 572 Ex. 6 
Dedekind 

cut, 321 
reals, 318ff, 327 

definable 
arrow, 543 
object, 541 
subobject, 543 

degeneracy, 452 
Deligne's theorem, 523 
de Morgan laws, 50 
dense 

below, 115, 592 
subobject, 221 

dependent choice, 345 Ex. 12 
derivation rules, 560 
Diaconescu, R., 275 

cover, 513 
lAC = Boolean-, 346 Ex. 16 

diagonal 
argument, 277 
functor, 19, 20 
map, 166 

diagram, 20 
internal-, 243, 392 
of a functor, 386 

differential form, 78 
dinatural, 45, 164, 174 
direct 

image, 68, 99, 171, 348 
discrete category, 27 
disjoint 

coproduct, 574 
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sum, 17 
union, 17, 195 

distributive 
lattice, 49 
law, 49 
law, infinite, 114 

domain, 10 
of definition, 298 

down segment, 258, 488 
downward closure, 335, 488 
dual category, 12 
duality, 482, 517 

effective family, 553 
effective topos, 601 
Eilenberg-MacLane space, 422, 454 
Eilenberg-Moore Theorem, 248, 249 
Eilenberg-Zilber Theorem, 454 
elementary topos, 48, 161ff, 593 
elements (of a presheaf), 41 

category of-, 41, 386 
generalized-, 237, 397 

embedding 
of locales, 483 
of topoi, 366 

enough 
points, 480, 523 
projectives, 216 Ex. 15 

enriched hom, 362 
epi, 11 
epi-mono factorization, 40, 185 
epimorphic family, 382, 393ff 
epimorphism, 11 

object of-, 284ff 
of sheaves, 92, 143 

equality 
predicate, 166, 310 

equalizer, 16 
as a pullback, 30 

equivalence 
of categories, 14 
of G-bundles, 424 
relation, 575 

equivalent ( monomorphism), 11 
equivariant sheaf, 596, 602 
erasing identities, 545 
essential, 360 
etale, 88, 89 

G-space, 596 
map of locales, 526 Ex. 9 

evaluation, 20, 45 
map, 45,168 

exact fork, 576 
stably-, 576 

excluded middle, 302 
exponentiable object, 20 
exponential, 20, 45, 167 

for coalgebras, 251 
for G-objects, 239 
for presheaves, 46 
for sheaves, 97, 136, 224 
from power object, 167 

extension 
of a field, 106 
of predicate, 165 

extensionality, 165, 332, 337 
external, 200, 235 

axiom of choice, 291ff 
composition, 170 

face map, 452 
factorization (epi-mono), 185 

for locales, 486ff 
for topoi, 373, 376 

factors through sheaves, 370 
faisceau, 64 
faithful, 13 
fiber, 79 

Index 

fibered product, 14, 15, 29 
fibration (of categories), 44, 598 
field 

splitting-, 108 
filter, 257, 516 

completely prime-, 524 Ex. 4 
maximal-, 516 
principal-, 257 
proper-, 344 Ex. 4 
quotient, 256ff 

filtered 
category, 385 
colimit, 96, 390 
limit, 385 

filtering 
category, 385 
equals fiat, 386, 399 
functor, 386, 394, 395 



Index 

final object, 194 
finer topology, 113, 263 Ex. 2 
finite 

limit, 30 
states of knowledge, 283 

finitely presented 
algebra, 119 
ring, 440 

first order theories, 529ff 
flat, 381 

equals filtering, 386, 399 
equals left exact, 390 
functor, 381, 386, 392 
module, 381 

floppy (tree), 336 
forces, 303 
forcing, 115, 278, 304ff, 315ff 

condition, 278 
notion of-, 278 
relation, 304, 316 

forgetful functor, 31, 177 
fork,576 
formula (of language), 299 

geometric-, 538 
foundation (axiom of), 332, 340 
foundations, 331ff, 601 
Fourman, M., 279 
fp algebra, 119 
fp ring, 440 
frame, 473 
free 

category, 437 
G-action, 81, 422 
G-object, 239 
T -algebra, 177, 249 
variable, 531 

freely generated (for rings), 440 
Freyd, P., 291 
Frobenius identity, 204, 502 
full (functor), 13 
functor, 12 

adjoint-, 17 
category, 13 
comparison-, 178 
contravariant-, 13, 26 
covariant-, 13 
faithful-, 13 
flat-, 381, 386, 392 
forgetful-, 31, 177 

full-, 13 
identity-, 13 
internal-, 241 
opposite-, 180 
representable-, 26, 33 

G-action, 238 
G-bundle, 34, 81, 423 

principal-, 81, 423 
G-map, 238 
G-object, 238, 361ff 
G-set, 24, 26, 150ff 
G-space, 81 
G-torsor, 426, 429 

universal-, 430 
Galois group, 106ff 
generalized element, 162, 237 

over U, 397 
generate 

a category, 139, 275, 576 
a sieve, 112 
a topology, 112 

generators 
(category), 139, 576 
(sieve), 112 

generic 
element, 305 
set, 283 
T-model, 435 

Gentzen, G., 560, 600 
geometric formula, 538 
geometric morphism, 348 

direct image of-, 348 
essential-, 360 
inverse image of-, 348 
open-, 497ff, 536, 537, 602 
surjective-, 366 

geometric realization, 456, 462 
geometric theory, 539 

classifying topos for-, 561ff 
germ, 83 
Giraud Theorem, 577 
global 

element, 164, 236 
section, 47 
sections functor, 47, 135, 

350 
truth values, 274 
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Godel, K., 279 
completeness, 297, 523 

Godement resolution, 515 
graph (of arrow), 214, 227, 542 
Grassmann manifold, 34, 423 
gros topos, 325, 416 
Grothendieck 

construction, 44, 386 
topology, 110, 222, 233 
topology (arrow form), 110 
topos, 127, 143 

group 
action, 24,150, 238, 361 
internal-, 237 
object, 237 
proper action by-, 158 Ex. 10 

groupoid, 343 Ex. 2, 602 

Heyting algebra, 48, 50ff, 114 
complete-, 114, 146, 475, 497 
internal-, 199ff 
of subobjects, 146, 201 

Hilbert Nullstellensatz, 116 
holds (in E), 301 
holomorphic function, 78, 82 
Hom-functor, 13, 32 
Hom-set, 12 
hom-tensor adjunction, 357ff, 580 
homology groups, 454 
homomorphism 

of Heyting algebras (internal), 200 
of lattices (internal), 200 
of interpretations, 532, 534 
of models, 532, 534 

hypersurface, 117 

ideal, 116 
closed-, 592 
in a poset, 592 
maximal-, 117, 344 Ex. 4, 

Ex. 6 
prime-, 117 
principal, 592 
radical-, 117 

identity morphism, 10 
image, 184 

direct-, 68, 99, 171, 348 
inverse-, 33, 99, 147, 348 
of sublocale, 505 

Index 

implication, 48, 50, 114, 146, 199 
inclusion in coproduct, 17 
incompatible conditions, 290 
indeterminates, 441 
indexed 

family, 28 
set, 28 

indirect proof, 302 
induction, 269 
inference (rules of-), 296 
infima, 145 
infinite object, 470 Ex. 9 
infinity (axiom of), 268, 332, 341 
initial object, 17 

strict-, 194 
injective object, 210 
integers 

object of-, 321 
internal, 201, 235ff 

adjoint, 206 
axiom of choice, 275, 

291ff, 312 
category, 240 
colimit, 265 Ex. 11 
composition, 170 
diagram, 243, 392 
functor, 241 
group, 237 
hom, 98, 170 
lattice, 198 
meet, 189 
partial order, 199 
presheaf, 244 

interpretation 
of a term, 298 
of language, 529, 532 

intersection, 48, 186 
intuitionism, 48, 55, 318 
inverse (of an arrow), 11 
inverse image, 33, 101, 147, 348 
irreducible 

subset, 477 
variety, 11 7 

isomorphism, 11 
isotropy subgroup, 62 Ex. 6, 151, 
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join, 56, 198 
jointly surjective, 523 
Joyal, A. (semantics), 302, 318 

Kan extension, 380, 417 Ex. 3 
kernel,476 
kernel pair, 30, 197, 229, 576 
killing points, 526 Ex. 8 
Kripke, S., 298, 318 
Kripke-Joyal semantics, 302££ 
Kronecker delta, 166 

lambda calculus, 299, 600 
language 

first-order-, 529 
Mitchell-Benabou-, 296££ 

lattice, 49 
internal-, 198 
object, 198 

Lawvere-Tierney 
topology, 219££ 

left adjoint, 17 
internal-, 206 

limit, 21 
create-, 72, 178 
of Grothendieck topoi, 602 
of sheaves, 128 
pointwise-, 22 

limiting cone, 21 
linear order, 457££ 
local 

character (of forcing), 304, 316 
coordinates, 74 
geometric morphism, 602 
homeomorphism, 88, 526 Ex. 9 
ring, 118, 447, 528, 540 
trivialization, 423 

locale, 474, 602 
presentation of-, 525 Ex. 5 

localic 
reflection, 491 
topos, 472££, 490 

locally 
closed,506 
constant functions, 319 
constant sheaf, 104 Ex. 5 
small, 12 

surjective, 143 
logic, 267££ 

first-order-, 296, 529££ 
intuitionistic-, 268 

logical morphism, 170, 193 
manifold, 73££ 
smooth-, 75 

maps 
of locales, 491 
of sheaves, 127 

matching family, 121, 122 
maximal 

filter, 516 
ideal, 117, 344 Ex. 4, Ex. 6 
sieve, 38 

meet, 56, 198 
internal-, 189 
of subs heaves, 145 

membership 
predicate, 165 
relation, 171, 310 

minimal model, 570 
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Mitchell, W., 343 
Mitchell-Benabou language, 296££, 

600 
model 

of a theory, 531, 534 
universal-, 435, 568££ 

module, 354 
monad,176 

from adjunction, 177 
monadic functor, 178 
monic,30 

universal-, 32 
mono, 11 
monoid, 25, 27, 248 
monomorphism, 11 

in terms of p.b., 16 
monotonic, 452 
monotonicity (offorcing), 304, 316 
de Morgan laws, 50 
morphism, 10 

canonical, 170 
geometric-, 348 
logical-, 170, 193 
of C-objects, 243 
of frames, 473 
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of orders, 460 
of sheaves, 67, 92, 127 
of sites, 409 

name, 165 
natural 

isomorphism, 13 
numbers object, 268 
transformation, 13 

negation, 52 
double-, 272 

nerve 
of a category, 453 

node (of a tree), 336 
non-degenerate topos, 275 
notion of forcing, 278 
nucleus, 485 
null set, 332, 337 
Nullstellensatz, 116 

object, 10 
classifier, 436ff 

open 
cover, 65, 113 
cover topology, 113 
geometric morphism, 497ff, 536, 

537, 602 
map of locales, 502ff 
map of spaces, 493 
object, 189 
sublocale, 488 

opposite 
category, 12, 242 
functor, 180 

order (in a topos), 457ff 
orbit, 81 
orthogonal group, 34 

pair (axiom), 332, 338 
partial order, 49 

internal-, 199 
pasting, 456 

lemma, 16 
paths to truth, 39, 99 
perfect set, 526 Ex. 8 
petit topos, 416 
plus construction, 129, 227 

point 
of a locale, 475, 478 
of an object, 333 
of a topos, 378ff, 523 
of a tree, 336 

pointwise (limit), 22, 30 
Pontrjagin duality, 482 
poset, 49, 278ff 

complete, 56 
power object, 162 

as aHa, 201 
in slice, 190 

power set, 277, 332, 339 
predicate, 165 

calculus, 302 
membership-, 165 
of equality, 166 

preserves 
colimits, 22 
covers, 411, 509 
exponentials, 171 
limits, 22, 170 

presheaf, 25, 66, 121 
constant-, 48, 104 Ex. 7 
internal-, 244 
separated-, 67, 129 

prime 
element, 476 
ideal, 117 
proper-, 476 

principal 
action, 81, 424 
filter, 257 
G-bundle, 81, 423 
ideal,592 
sieve, 70, 220 

product, 14 
cartesian-, 14 
fibered-, 14, 15, 29 
of coalgebras, 251 

Index 

of topoi, 265 Ex. 8, 419 Ex. 14, 
15 

projection, 14 
formula, 204, 502 
functor, 386 
internal-formula, 206 
of product, 14 
of pullback, 15 

projective object, 216 Ex. 15 
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internally-, 216 Ex. 16, 344 Ex. 5 
proof, constructive, 302 
proper 

action, 103 Ex. 3, 158 Ex. 10 
filter, 344 Ex. 4 

property (in a topos), 165 
propositional 

calculus, 48ff 
connectives, 48, 296 
language, 572 Ex. 7 

pseudo-complement, 54 
pullback, 14, 29 
pushout, 17, 40 

quantifiers, 57ff, 296, 300 
restricted-, 332 

quasi-inverse, 14 
quotients, 577 

ring of-, 119 

radical (of an ideal), 116 
rational function, 117 
rationals, object of-, 320 
real number (in a topos), 318ff 
recursion, 269 
reduced product (of topoi), 

265 Ex. 10 
reductio ad absurdum, 302 
refine, 112, 412 
reflect 

isomorphisms, 179 
order, 371 

reflective subcategory, 90 
reflexive pair, 179, 373 
representable 

functor, 26, 33 
presheaf, 26 

restricted Zermelo, 332 
restriction, 25, 65 
Riemann surface, 82 
right adjoint, 17 
right C-objects, 244 
right ideal (in a monoid), 35 
rigid (tree), 335 
ring, 439 

fp-,440 
object, 439 

of fractions, 119 
polynomial-, 441 

ringed space, 78, 97 
root (of a tree), 335 

schemes, 599 
schizophrenic object, 482 
Scott, D., 283 
section, 60, 78, 79, 88 
semilattice (internal), 188 
semantics, 296ff 

Kripke-Joyal-, 302ff 
sheaf-, 315ff 

separated 
object, 223 
presheaf, 67, 129 

sets 
large-, 12 
small-, 12 
through time, 25 
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sheaf, 64, 66, 122, 223 
associated-, 87, 128, 133, 227 
condition, 122 
constant-, 135, 104 Ex. 7, 319 
equivariant-, 596, 602 
for a basis, 69 
locally constant-, 104 Ex. 5 
of cross-sections, 79, 526 Ex. 10 
of germs, 94 
of groups, 95 
of modules, 97 
semantics, 315ff 
structure-, 75, 125 

sheafification, 87, 227 
Sierpinski space, 468 Ex. 2, 481, 572 

Ex.5 
sieve, 37, 70, 109 

closed-, 140 
covering-, 70, 110 
maximal-, 38 
principal-, 70, 220 

simplex, 27,452 
singular-, 27, 452 
standard-, 452, 454, 461 

simplicial 
category, 452 
object, 26 
set, 27, 452ff 
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singleton arrow, 166 
singular 

cohomology, 422 
complex, 454, 456, 462 
homology, 454 
simplex, 27 

site, 110, 112 
construction of a-, 580 
for continuous G-sets, 152 
of finite type, 521 
syntactic-, 555 

sketches, 600 
skyscraper sheaf, 93 
slice category, 12, 26 

of a topos, 190ff 
small 

category, 12 
set, 12 

smooth 
function, 75 
manifold, 75 
map, 76 

sober space, 477 
Solovay, R.M., 283 
sort, 297, 529 
soundness theorem, 561 
source 

of a term, 298 
Souslin property, 288 
space 

affine-, 119 
ringed-,78 
sober-, 477 

spatial locale, 480 
split, 333 

coequalizer, 63 Ex. 11 
fork, 182 

stability axiom, 110, 112 
stable (under p. b.), 61 

coproduct, 574 
stalk, 84 

functor, 92, 93 
map, 92 

standard simplex, 452, 454, 461 
Steenrod algebra, 423 
Stiefel manifold, 34, 423 
Stone 

duality, 50, 181, 482, 517 
space, 517 

string (of arrows), 513 
structure sheaf, 75, 117, 125 
subfunctor, 36 
sublocale, 485 

closed-, 488 
open-, 488 

subobject, 11 
subobject classifier, 32, 162 

as Ha, 201 
for coalgebras, 254 
for G-objects, 240 
for M-sets, 35 
for presheaves, 38 
for sheaves, 98, 142, 225ff 

subsheaf, 67, 142, 145 
subspace topology, 484 
supremum, 145 
surjection 

of topoi, 366 
of locales, 483 

syntactic 
category, 555ff 
site, 555ff 

tangent 
bundle, 77 
vector, 76 

tensor-hom adjunction, 357ff 
tensor product, 356ff 

of group actions, 361 
of rings, 107 

term (of a sort), 529 
terms (of a language), 298 
terminal object, 14, 30 
tertium non datur, 5, 55 
theory 

algebraic-, 540 
geometric-, 539 
in a language, 531 

time till truth, 36 
top element, 198 
topoi,48 
topology, 219 

""''''''-, 115, 272 
atomic-, 115, 126, 152, 469 
canonical-, 126, 490 
coarsest-, 113 
dense-, 115, 272, 592 

Index 
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double negation-, 272 
finer-, 113, 263 Ex. 2 
Grothendieck-, 110, 222, 233 
open cover-, 113 
subcanonical-, 126, 554 
sup-, 115 
trivial-, 113 
Lawvere-Tierney-, 219ff 
Zariski-, 117 

topos, 48, 161 
Boolean-, 270, 311 
Cohen-, 278, 318 
coherent-, 521 
gros-, 325ff, 416 
Grothendieck-, 127 
localic-, 472ff, 490 
non-degenerate-, 275 
of coalgebras, 251 
over sets, 351, 392 
petit-, 416 
Zariski-, 447ff 

torsion product, 381 
torsor, 425ff 
transformation 

natural-, 13 
covering-, 107 

transitive G-action, 81, 424 
transitive set, 335 
transitivity 

axiom (for topology), 110, 112 
weak- -, 156 Ex. 2 

transpose, 163, 299 
tree, 335ff 
triangular identities, 19 
triple, 176 
tripleability theorem, 372 
true (arrow), 32, 163 
true in a topos, 301 
truth,301 

values, 31, 32 
twist map, 198, 458, 594 
two-valued topos, 256, 274 
types (of a language), 298, 529 

ultra-product (of topoi) , 265 Ex. 10 
union, 48, 187, 332, 338 
unit (of adjunction), 18 

universal, 14 
arrow, 18 
cohomology class, 422 
cone, 21 
G-bundle, 425 
G-torsor, 430 
model, 435, 568ff 
monic,32 
object, 439 
order, 465 
ring, 447 
validity, 301 
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universe (Grothendieck-), 12, 560 
upward closure, 336, 488 

validity, 301, 531, 534 
variables, 296 
variety 

affine-, 116 
vector 

bundle, 80 
field, 77 

vertex 
of a cone, 385 
of a simplex, 452ff 
sets, 460 

well-founded, 335 
well-powered, 32 
well-pointed topos, 236, 275, 333ff 
Wraith, G., 265 Ex. 9 

Yoneda 
embedding, 26, 109 
lemma, 26 

Zariski 
site, 116ff 
topology, 11 7 
topos, 447ff 

Zermelo-Fraenkel axioms, 268, 279, 
331 

Zorn's lemma, 276 
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Kostrikin: Introduction to Algebra 
Luecking/Rubel: Complex Analysis: A Functional Analysis Approach 
MacLane/Moerdijk: Sheaves in Geometry and Logic 
Marcus: Number Fields 
McCarthy: Introduction to Arithmetical Functions 
Meyer: Essential Mathematics for Applied Fields 
Mines/Richman/Ruitenburg: A Course in Constructive Algebra 
Moise: Introductory Problems Course in Analysis and Topology 
Morris: Introduction to Game Theory 
Poizat: A Course In Model Theory: An Introduction to Contemporary Mathematical Logic 
Polster: A Geometrical Picture Book 
PorterlWoods: Extensions and Absolutes of Hausdorff Spaces 
RadjavilRosenthal: Simultaneous Triangularization 
Ramsay/Richtmyer: Introduction to Hyperbolic Geometry 
Reisel: Elementary Theory of Metric Spaces 
Ribenboim: Classical Theory of Algebraic Numbers 
Rickart: Natural Function Algebras 
Rotman: Galois Theory 
Rubel/Colliander: Entire and Meromorphic Functions 
Sagan: Space-Filling Curves 
Samelson: Notes on Lie Algebras 
Schiff: Normal Families 
Shapiro: Composition Operators and Classical Function Theory 
Simon net: Measures and Probability 
Smith: Power Series From a Computational Point of View 
Smith/KahanplHi/KekaIainen/Traves: An Invitation to Algebraic Geometry 
Smoryski: Self-Reference and Modal Logic 
Stillwell: Geometry of Surfaces 
Stroock: An Introduction to the Theory of Large Deviations 
Sunder: An Invitation to von Neumann Algebras 
Tondeur: Foliations on Riemannian Manifolds 
Wong: Weyl Transforms 
Zhang: Matrix Theory: Basic Results and Techniques 
Zong: Sphere Packings 
Zong: Strange Phenomena in Convex and Discrete Geometry 
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